Goto

Collaborating Authors

 Lyle, Jeremy


Sample Bounded Distributed Reinforcement Learning for Decentralized POMDPs

AAAI Conferences

Decentralized partially observable Markov decision processes (Dec-POMDPs) offer a powerful modeling technique for realistic multi-agent coordination problems under uncertainty. Prevalent solution techniques are centralized and assume prior knowledge of the model. We propose a distributed reinforcement learning approach, where agents take turns to learn best responses to each other’s policies. This promotes decentralization of the policy computation problem, and relaxes reliance on the full knowledge of the problem parameters. We derive the relation between the sample complexity of best response learning and error tolerance. Our key contribution is to show that sample complexity could grow exponentially with the problem horizon. We show empirically that even if the sample requirement is set lower than what theory demands, our learning approach can produce (near) optimal policies in some benchmark Dec-POMDP problems.


Multi-Agent Plan Recognition: Formalization and Algorithms

AAAI Conferences

Multi-Agent Plan Recognition (MAPR) seeks to identify the dynamic team structures and team behaviors from the observations of the activity-sequences of a set of intelligent agents, based on a library of known team-activities (plan library). It has important applications in analyzing data from automated monitoring, surveillance, and intelligence analysis in general. In this paper, we formalize MAPR using a basic model that explicates the cost of abduction in single agent plan recognition by "flattening" or decompressing the (usually compact, hierarchical) plan library. We show that single-agent plan recognition with a decompressed library can be solved in time polynomial in the input size, while it is known that with a compressed (by partial ordering constraints) library it is NP-complete. This leads to an important insight: that although the compactness of the plan library plays an important role in the hardness of single-agent plan recognition (as recognized in the existing literature), that is not the case with multiple agents. We show, for the first time, that MAPR is NP-complete even when the (multi-agent) plan library is fully decompressed. As with previous solution approaches, we break the problem into two stages: hypothesis generation and hypothesis search. We show that Knuth's ``Algorithm X'' (with the efficient ``dancing links'' representation) is particularly suited for our model, and can be adapted to perform a branch and bound search for the second stage, in this model. We show empirically that this new approach leads to significant pruning of the hypothesis space in MAPR.