Goto

Collaborating Authors

 Lv, Yiliang


Res-Tuning: A Flexible and Efficient Tuning Paradigm via Unbinding Tuner from Backbone

arXiv.org Artificial Intelligence

Parameter-efficient tuning has become a trend in transferring large-scale foundation models to downstream applications. Existing methods typically embed some light-weight tuners into the backbone, where both the design and the learning of the tuners are highly dependent on the base model. This work offers a new tuning paradigm, dubbed Res-Tuning, which intentionally unbinds tuners from the backbone. With both theoretical and empirical evidence, we show that popular tuning approaches have their equivalent counterparts under our unbinding formulation, and hence can be integrated into our framework effortlessly. Thanks to the structural disentanglement, we manage to free the design of tuners from the network architecture, facilitating flexible combination of various tuning strategies. We further propose a memory-efficient variant of Res-Tuning, where the bypass i.e., formed by a sequence of tuners) is effectively detached from the main branch, such that the gradients are back-propagated only to the tuners but not to the backbone. Such a detachment also allows one-time backbone forward for multi-task inference. Extensive experiments on both discriminative and generative tasks demonstrate the superiority of our method over existing alternatives from the perspectives of efficacy and efficiency. Project page: $\href{https://res-tuning.github.io/}{\textit{https://res-tuning.github.io/}}$.


Logic Diffusion for Knowledge Graph Reasoning

arXiv.org Artificial Intelligence

Most recent works focus on answering first order logical queries to explore the knowledge graph reasoning via multi-hop logic predictions. However, existing reasoning models are limited by the circumscribed logical paradigms of training samples, which leads to a weak generalization of unseen logic. To address these issues, we propose a plug-in module called Logic Diffusion (LoD) to discover unseen queries from surroundings and achieves dynamical equilibrium between different kinds of patterns. The basic idea of LoD is relation diffusion and sampling sub-logic by random walking as well as a special training mechanism called gradient adaption. Besides, LoD is accompanied by a novel loss function to further achieve the robust logical diffusion when facing noisy data in training or testing sets. Extensive experiments on four public datasets demonstrate the superiority of mainstream knowledge graph reasoning models with LoD over state-of-the-art. Moreover, our ablation study proves the general effectiveness of LoD on the noise-rich knowledge graph.


Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning

arXiv.org Artificial Intelligence

Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representation of seen compositions, these methods ignore the explicit modeling of the state and object, thus limiting the exploitation of pre-trained knowledge and generalization to unseen compositions. With a particular focus on the universality of the solution, in this work, we propose a novel paradigm for CZSL models that establishes three identification branches (i.e., Multi-Path) to jointly model the state, object, and composition. The presented Troika is our implementation that aligns the branch-specific prompt representations with decomposed visual features. To calibrate the bias between semantically similar multi-modal representations, we further devise a Cross-Modal Traction module into Troika that shifts the prompt representation towards the current visual content. We conduct extensive experiments on three popular benchmarks, where our method significantly outperforms existing methods in both closed-world and open-world settings.


VoP: Text-Video Co-operative Prompt Tuning for Cross-Modal Retrieval

arXiv.org Artificial Intelligence

Many recent studies leverage the pre-trained CLIP for text-video cross-modal retrieval by tuning the backbone with additional heavy modules, which not only brings huge computational burdens with much more parameters, but also leads to the knowledge forgetting from upstream models. In this work, we propose the VoP: Text-Video Co-operative Prompt Tuning for efficient tuning on the text-video retrieval task. The proposed VoP is an end-to-end framework with both video & text prompts introducing, which can be regarded as a powerful baseline with only 0.1% trainable parameters. Further, based on the spatio-temporal characteristics of videos, we develop three novel video prompt mechanisms to improve the performance with different scales of trainable parameters. The basic idea of the VoP enhancement is to model the frame position, frame context, and layer function with specific trainable prompts, respectively. Extensive experiments show that compared to full fine-tuning, the enhanced VoP achieves a 1.4% average R@1 gain across five text-video retrieval benchmarks with 6x less parameter overhead. The code will be available at https://github.com/bighuang624/VoP.