Goto

Collaborating Authors

 Lv, Qitan


Exploiting Edited Large Language Models as General Scientific Optimizers

arXiv.org Artificial Intelligence

Large language models (LLMs) have been widely adopted in mathematical optimization in scientific scenarios for their extensive knowledge and advanced reasoning capabilities. Existing methods mainly focus on utilizing LLMs to solve optimization problems in a prompt-based manner, which takes observational feedback as additional textual descriptions. However, due to LLM's \textbf{high sensitivity to the prompts} and \textbf{tendency to get lost in lengthy prompts}, these methods struggle to effectively utilize the {observational} feedback from each optimization step, which severely hinders the applications for real-world scenarios. To address these challenges, we propose a conceptually simple and general {bi-level} optimization method, namely \textbf{G}eneral \textbf{S}cientific \textbf{O}ptimizers (GSO). Specifically, GSO first utilizes inner-level simulators as experimental platforms to evaluate the current solution and provide observational feedback. Then, LLMs serve as knowledgeable and versatile scientists, generating new solutions by refining potential errors from the feedback as the outer-level optimization. Finally, simulations together with the expert knowledge in LLMs are jointly updated with bi-level interactions via model editing. Extensive experiments show that GSO consistently outperforms existing state-of-the-art methods using \textit{six} different LLM backbones on \textit{seven} different tasks, demonstrating the effectiveness and a wide range of applications.


Coarse-to-Fine Highlighting: Reducing Knowledge Hallucination in Large Language Models

arXiv.org Artificial Intelligence

Generation of plausible but incorrect factual information, often termed hallucination, has attracted significant research interest. Retrieval-augmented language model (RALM) -- which enhances models with up-to-date knowledge -- emerges as a promising method to reduce hallucination. However, existing RALMs may instead exacerbate hallucination when retrieving lengthy contexts. To address this challenge, we propose COFT, a novel \textbf{CO}arse-to-\textbf{F}ine highligh\textbf{T}ing method to focus on different granularity-level key texts, thereby avoiding getting lost in lengthy contexts. Specifically, COFT consists of three components: \textit{recaller}, \textit{scorer}, and \textit{selector}. First, \textit{recaller} applies a knowledge graph to extract potential key entities in a given context. Second, \textit{scorer} measures the importance of each entity by calculating its contextual weight. Finally, \textit{selector} selects high contextual weight entities with a dynamic threshold algorithm and highlights the corresponding paragraphs, sentences, or words in a coarse-to-fine manner. Extensive experiments on the knowledge hallucination benchmark demonstrate the effectiveness of COFT, leading to a superior performance over $30\%$ in the F1 score metric. Moreover, COFT also exhibits remarkable versatility across various long-form tasks, such as reading comprehension and question answering.


SAC-KG: Exploiting Large Language Models as Skilled Automatic Constructors for Domain Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) play a pivotal role in knowledge-intensive tasks across specialized domains, where the acquisition of precise and dependable knowledge is crucial. However, existing KG construction methods heavily rely on human intervention to attain qualified KGs, which severely hinders the practical applicability in real-world scenarios. To address this challenge, we propose a general KG construction framework, named SAC-KG, to exploit large language models (LLMs) as Skilled Automatic Constructors for domain Knowledge Graph. SAC-KG effectively involves LLMs as domain experts to generate specialized and precise multi-level KGs. Specifically, SAC-KG consists of three components: Generator, Verifier, and Pruner. For a given entity, Generator produces its relations and tails from raw domain corpora, to construct a specialized single-level KG. Verifier and Pruner then work together to ensure precision by correcting generation errors and determining whether newly produced tails require further iteration for the next-level KG.Experiments demonstrate that SAC-KG automatically constructs a domain KG at the scale of over one million nodes and achieves a precision of 89.32%, leading to a superior performance with over 20% increase in precision rate compared to existing state-of-the-art methods for the KG construction task.