Lv, Jingjing
CTR-Driven Advertising Image Generation with Multimodal Large Language Models
Chen, Xingye, Feng, Wei, Du, Zhenbang, Wang, Weizhen, Chen, Yanyin, Wang, Haohan, Liu, Linkai, Li, Yaoyu, Zhao, Jinyuan, Li, Yu, Zhang, Zheng, Lv, Jingjing, Shen, Junjie, Lin, Zhangang, Shao, Jingping, Shao, Yuanjie, You, Xinge, Gao, Changxin, Sang, Nong
In web data, advertising images are crucial for capturing user attention and improving advertising effectiveness. Most existing methods generate background for products primarily focus on the aesthetic quality, which may fail to achieve satisfactory online performance. To address this limitation, we explore the use of Multimodal Large Language Models (MLLMs) for generating advertising images by optimizing for Click-Through Rate (CTR) as the primary objective. Firstly, we build targeted pre-training tasks, and leverage a large-scale e-commerce multimodal dataset to equip MLLMs with initial capabilities for advertising image generation tasks. To further improve the CTR of generated images, we propose a novel reward model to fine-tune pre-trained MLLMs through Reinforcement Learning (RL), which can jointly utilize multimodal features and accurately reflect user click preferences. Meanwhile, a product-centric preference optimization strategy is developed to ensure that the generated background content aligns with the product characteristics after fine-tuning, enhancing the overall relevance and effectiveness of the advertising images. Extensive experiments have demonstrated that our method achieves state-of-the-art performance in both online and offline metrics. Our code and pre-trained models are publicly available at: https://github.com/Chenguoz/CAIG.
Generate E-commerce Product Background by Integrating Category Commonality and Personalized Style
Wang, Haohan, Feng, Wei, Lu, Yang, Li, Yaoyu, Zhang, Zheng, Lv, Jingjing, Zhu, Xin, Shen, Junjie, Lin, Zhangang, Bo, Lixing, Shao, Jingping
The state-of-the-art methods for e-commerce product background generation suffer from the inefficiency of designing product-wise prompts when scaling up the production, as well as the ineffectiveness of describing fine-grained styles when customizing personalized backgrounds for some specific brands. To address these obstacles, we integrate the category commonality and personalized style into diffusion models. Concretely, we propose a Category-Wise Generator to enable large-scale background generation for the first time. A unique identifier in the prompt is assigned to each category, whose attention is located on the background by a mask-guided cross attention layer to learn the category-wise style. Furthermore, for products with specific and fine-grained requirements in layout, elements, etc, a Personality-Wise Generator is devised to learn such personalized style directly from a reference image to resolve textual ambiguities, and is trained in a self-supervised manner for more efficient training data usage. To advance research in this field, the first large-scale e-commerce product background generation dataset BG60k is constructed, which covers more than 60k product images from over 2k categories. Experiments demonstrate that our method could generate high-quality backgrounds for different categories, and maintain the personalized background style of reference images. The link to BG60k and codes will be available soon.
RTQ: Rethinking Video-language Understanding Based on Image-text Model
Wang, Xiao, Li, Yaoyu, Gan, Tian, Zhang, Zheng, Lv, Jingjing, Nie, Liqiang
Recent advancements in video-language understanding have been established on the foundation of image-text models, resulting in promising outcomes due to the shared knowledge between images and videos. However, video-language understanding presents unique challenges due to the inclusion of highly complex semantic details, which result in information redundancy, temporal dependency, and scene complexity. Current techniques have only partially tackled these issues, and our quantitative analysis indicates that some of these methods are complementary. In light of this, we propose a novel framework called RTQ (Refine, Temporal model, and Query), which addresses these challenges simultaneously. The approach involves refining redundant information within frames, modeling temporal relations among frames, and querying task-specific information from the videos. Remarkably, our model demonstrates outstanding performance even in the absence of video-language pre-training, and the results are comparable with or superior to those achieved by state-of-the-art pre-training methods. Code is available at https://github.com/SCZwangxiao/RTQ-MM2023.