Luo, Zhiyao
Reinforcement Learning in Dynamic Treatment Regimes Needs Critical Reexamination
Luo, Zhiyao, Pan, Yangchen, Watkinson, Peter, Zhu, Tingting
In the rapidly changing healthcare landscape, the implementation of offline reinforcement learning (RL) in dynamic treatment regimes (DTRs) presents a mix of unprecedented opportunities and challenges. This position paper offers a critical examination of the current status of offline RL in the context of DTRs. We argue for a reassessment of applying RL in DTRs, citing concerns such as inconsistent and potentially inconclusive evaluation metrics, the absence of naive and supervised learning baselines, and the diverse choice of RL formulation in existing research. Through a case study with more than 17,000 evaluation experiments using a publicly available Sepsis dataset, we demonstrate that the performance of RL algorithms can significantly vary with changes in evaluation metrics and Markov Decision Process (MDP) formulations. Surprisingly, it is observed that in some instances, RL algorithms can be surpassed by random baselines subjected to policy evaluation methods and reward design. This calls for more careful policy evaluation and algorithm development in future DTR works. Additionally, we discussed potential enhancements toward more reliable development of RL-based dynamic treatment regimes and invited further discussion within the community. Code is available at https://github.com/GilesLuo/ReassessDTR.
DTR-Bench: An in silico Environment and Benchmark Platform for Reinforcement Learning Based Dynamic Treatment Regime
Luo, Zhiyao, Zhu, Mingcheng, Liu, Fenglin, Li, Jiali, Pan, Yangchen, Zhou, Jiandong, Zhu, Tingting
Reinforcement learning (RL) has garnered increasing recognition for its potential to optimise dynamic treatment regimes (DTRs) in personalised medicine, particularly for drug dosage prescriptions and medication recommendations. However, a significant challenge persists: the absence of a unified framework for simulating diverse healthcare scenarios and a comprehensive analysis to benchmark the effectiveness of RL algorithms within these contexts. To address this gap, we introduce \textit{DTR-Bench}, a benchmarking platform comprising four distinct simulation environments tailored to common DTR applications, including cancer chemotherapy, radiotherapy, glucose management in diabetes, and sepsis treatment. We evaluate various state-of-the-art RL algorithms across these settings, particularly highlighting their performance amidst real-world challenges such as pharmacokinetic/pharmacodynamic (PK/PD) variability, noise, and missing data. Our experiments reveal varying degrees of performance degradation among RL algorithms in the presence of noise and patient variability, with some algorithms failing to converge. Additionally, we observe that using temporal observation representations does not consistently lead to improved performance in DTR settings. Our findings underscore the necessity of developing robust, adaptive RL algorithms capable of effectively managing these complexities to enhance patient-specific healthcare. We have open-sourced our benchmark and code at https://github.com/GilesLuo/DTR-Bench.
Integrating Chemistry Knowledge in Large Language Models via Prompt Engineering
Liu, Hongxuan, Yin, Haoyu, Luo, Zhiyao, Wang, Xiaonan
This paper presents a study on the integration of domain-specific knowledge in prompt engineering to enhance the performance of large language models (LLMs) in scientific domains. A benchmark dataset is curated to encapsulate the intricate physical-chemical properties of small molecules, their drugability for pharmacology, alongside the functional attributes of enzymes and crystal materials, underscoring the relevance and applicability across biological and chemical domains.The proposed domain-knowledge embedded prompt engineering method outperforms traditional prompt engineering strategies on various metrics, including capability, accuracy, F1 score, and hallucination drop. The effectiveness of the method is demonstrated through case studies on complex materials including the MacMillan catalyst, paclitaxel, and lithium cobalt oxide. The results suggest that domain-knowledge prompts can guide LLMs to generate more accurate and relevant responses, highlighting the potential of LLMs as powerful tools for scientific discovery and innovation when equipped with domain-specific prompts. The study also discusses limitations and future directions for domain-specific prompt engineering development.
Flatland Competition 2020: MAPF and MARL for Efficient Train Coordination on a Grid World
Laurent, Florian, Schneider, Manuel, Scheller, Christian, Watson, Jeremy, Li, Jiaoyang, Chen, Zhe, Zheng, Yi, Chan, Shao-Hung, Makhnev, Konstantin, Svidchenko, Oleg, Egorov, Vladimir, Ivanov, Dmitry, Shpilman, Aleksei, Spirovska, Evgenija, Tanevski, Oliver, Nikov, Aleksandar, Grunder, Ramon, Galevski, David, Mitrovski, Jakov, Sartoretti, Guillaume, Luo, Zhiyao, Damani, Mehul, Bhattacharya, Nilabha, Agarwal, Shivam, Egli, Adrian, Nygren, Erik, Mohanty, Sharada
The Flatland competition aimed at finding novel approaches to solve the vehicle re-scheduling problem (VRSP). The VRSP is concerned with scheduling trips in traffic networks and the re-scheduling of vehicles when disruptions occur, for example the breakdown of a vehicle. While solving the VRSP in various settings has been an active area in operations research (OR) for decades, the ever-growing complexity of modern railway networks makes dynamic real-time scheduling of traffic virtually impossible. Recently, multi-agent reinforcement learning (MARL) has successfully tackled challenging tasks where many agents need to be coordinated, such as multiplayer video games. However, the coordination of hundreds of agents in a real-life setting like a railway network remains challenging and the Flatland environment used for the competition models these real-world properties in a simplified manner. Submissions had to bring as many trains (agents) to their target stations in as little time as possible. While the best submissions were in the OR category, participants found many promising MARL approaches. Using both centralized and decentralized learning based approaches, top submissions used graph representations of the environment to construct tree-based observations. Further, different coordination mechanisms were implemented, such as communication and prioritization between agents. This paper presents the competition setup, four outstanding solutions to the competition, and a cross-comparison between them.