Luo, Yan
FairDiffusion: Enhancing Equity in Latent Diffusion Models via Fair Bayesian Perturbation
Luo, Yan, Khan, Muhammad Osama, Wen, Congcong, Afzal, Muhammad Muneeb, Wuermeling, Titus Fidelis, Shi, Min, Tian, Yu, Fang, Yi, Wang, Mengyu
Recent progress in generative AI, especially diffusion models, has demonstrated significant utility in text-to-image synthesis. Particularly in healthcare, these models offer immense potential in generating synthetic datasets and training medical students. However, despite these strong performances, it remains uncertain if the image generation quality is consistent across different demographic subgroups. To address this critical concern, we present the first comprehensive study on the fairness of medical text-to-image diffusion models. Our extensive evaluations of the popular Stable Diffusion model reveal significant disparities across gender, race, and ethnicity. To mitigate these biases, we introduce FairDiffusion, an equity-aware latent diffusion model that enhances fairness in both image generation quality as well as the semantic correlation of clinical features. In addition, we also design and curate FairGenMed, the first dataset for studying the fairness of medical generative models. Complementing this effort, we further evaluate FairDiffusion on two widely-used external medical datasets: HAM10000 (dermatoscopic images) and CheXpert (chest X-rays) to demonstrate FairDiffusion's effectiveness in addressing fairness concerns across diverse medical imaging modalities. Together, FairDiffusion and FairGenMed significantly advance research in fair generative learning, promoting equitable benefits of generative AI in healthcare.
Impact of Data Distribution on Fairness Guarantees in Equitable Deep Learning
Luo, Yan, Wen, Congcong, Shi, Min, Huang, Hao, Fang, Yi, Wang, Mengyu
We present a comprehensive theoretical framework analyzing the relationship between data distributions and fairness guarantees in equitable deep learning. Our work establishes novel theoretical bounds that explicitly account for data distribution heterogeneity across demographic groups, while introducing a formal analysis framework that minimizes expected loss differences across these groups. We derive comprehensive theoretical bounds for fairness errors and convergence rates, and characterize how distributional differences between groups affect the fundamental trade-off between fairness and accuracy. Through extensive experiments on diverse datasets, including FairVision (ophthalmology), CheXpert (chest X-rays), HAM10000 (dermatology), and FairFace (facial recognition), we validate our theoretical findings and demonstrate that differences in feature distributions across demographic groups significantly impact model fairness, with performance disparities particularly pronounced in racial categories. The theoretical bounds we derive crroborate these empirical observations, providing insights into the fundamental limits of achieving fairness in deep learning models when faced with heterogeneous data distributions. This work advances our understanding of fairness in AI-based diagnosis systems and provides a theoretical foundation for developing more equitable algorithms. The code for analysis is publicly available via \url{https://github.com/Harvard-Ophthalmology-AI-Lab/fairness_guarantees}.
TransFair: Transferring Fairness from Ocular Disease Classification to Progression Prediction
Gheisi, Leila, Chu, Henry, Gottumukkala, Raju, Luo, Yan, Zhu, Xingquan, Wang, Mengyu, Shi, Min
The use of artificial intelligence (AI) in automated disease classification significantly reduces healthcare costs and improves the accessibility of services. However, this transformation has given rise to concerns about the fairness of AI, which disproportionately affects certain groups, particularly patients from underprivileged populations. Recently, a number of methods and large-scale datasets have been proposed to address group performance disparities. Although these methods have shown effectiveness in disease classification tasks, they may fall short in ensuring fair prediction of disease progression, mainly because of limited longitudinal data with diverse demographics available for training a robust and equitable prediction model. In this paper, we introduce TransFair to enhance demographic fairness in progression prediction for ocular diseases. TransFair aims to transfer a fairness-enhanced disease classification model to the task of progression prediction with fairness preserved. Specifically, we train a fair EfficientNet, termed FairEN, equipped with a fairness-aware attention mechanism using extensive data for ocular disease classification. Subsequently, this fair classification model is adapted to a fair progression prediction model through knowledge distillation, which aims to minimize the latent feature distances between the classification and progression prediction models. We evaluate FairEN and TransFair for fairness-enhanced ocular disease classification and progression prediction using both two-dimensional (2D) and 3D retinal images. Extensive experiments and comparisons with models with and without considering fairness learning show that TransFair effectively enhances demographic equity in predicting ocular disease progression.
FairDomain: Achieving Fairness in Cross-Domain Medical Image Segmentation and Classification
Tian, Yu, Wen, Congcong, Shi, Min, Afzal, Muhammad Muneeb, Huang, Hao, Khan, Muhammad Osama, Luo, Yan, Fang, Yi, Wang, Mengyu
Addressing fairness in artificial intelligence (AI), particularly in medical AI, is crucial for ensuring equitable healthcare outcomes. Recent efforts to enhance fairness have introduced new methodologies and datasets in medical AI. However, the fairness issue under the setting of domain transfer is almost unexplored, while it is common that clinics rely on different imaging technologies (e.g., different retinal imaging modalities) for patient diagnosis. This paper presents FairDomain, a pioneering systemic study into algorithmic fairness under domain shifts, employing state-of-the-art domain adaptation (DA) and generalization (DG) algorithms for both medical segmentation and classification tasks to understand how biases are transferred between different domains. We also introduce a novel plug-and-play fair identity attention (FIA) module that adapts to various DA and DG algorithms to improve fairness by using self-attention to adjust feature importance based on demographic attributes. Additionally, we curate the first fairness-focused dataset with two paired imaging modalities for the same patient cohort on medical segmentation and classification tasks, to rigorously assess fairness in domain-shift scenarios. Excluding the confounding impact of demographic distribution variation between source and target domains will allow clearer quantification of the performance of domain transfer models. Our extensive evaluations reveal that the proposed FIA significantly enhances both model performance accounted for fairness across all domain shift settings (i.e., DA and DG) with respect to different demographics, which outperforms existing methods on both segmentation and classification. The code and data can be accessed at https://ophai.hms.harvard.edu/datasets/
MedFLIP: Medical Vision-and-Language Self-supervised Fast Pre-Training with Masked Autoencoder
Li, Lei, Zhang, Tianfang, Zhang, Xinglin, Liu, Jiaqi, Ma, Bingqi, Luo, Yan, Chen, Tao
Within the domain of medical analysis, extensive research has explored the potential of mutual learning between Masked Autoencoders(MAEs) and multimodal data. However, the impact of MAEs on intermodality remains a key challenge. We introduce MedFLIP, a Fast Language-Image Pre-training method for Medical analysis. We explore MAEs for zero-shot learning with crossed domains, which enhances the model's ability to learn from limited data, a common scenario in medical diagnostics. We verify that masking an image does not affect inter-modal learning. Furthermore, we propose the SVD loss to enhance the representation learning for characteristics of medical images, aiming to improve classification accuracy by leveraging the structural intricacies of such data. Our theory posits that masking encourages semantic preservation, robust feature extraction, regularization, domain adaptation, and invariance learning. Lastly, we validate using language will improve the zero-shot performance for the medical image analysis. MedFLIP's scaling of the masking process marks an advancement in the field, offering a pathway to rapid and precise medical image analysis without the traditional computational bottlenecks. Through experiments and validation, MedFLIP demonstrates efficient performance improvements, helps for future research and application in medical diagnostics.
Streamlined Photoacoustic Image Processing with Foundation Models: A Training-Free Solution
Deng, Handi, Zhou, Yucheng, Xiang, Jiaxuan, Gu, Liujie, Luo, Yan, Feng, Hai, Liu, Mingyuan, Ma, Cheng
Foundation models have rapidly evolved and have achieved significant accomplishments in computer vision tasks. Specifically, the prompt mechanism conveniently allows users to integrate image prior information into the model, making it possible to apply models without any training. Therefore, we propose a method based on foundation models and zero training to solve the tasks of photoacoustic (PA) image segmentation. We employed the segment anything model (SAM) by setting simple prompts and integrating the model's outputs with prior knowledge of the imaged objects to accomplish various tasks, including: (1) removing the skin signal in three-dimensional PA image rendering; (2) dual speed-of-sound reconstruction, and (3) segmentation of finger blood vessels. Through these demonstrations, we have concluded that deep learning can be directly applied in PA imaging without the requirement for network design and training. This potentially allows for a hands-on, convenient approach to achieving efficient and accurate segmentation of PA images. This letter serves as a comprehensive tutorial, facilitating the mastery of the technique through the provision of code and sample datasets.
TransFlower: An Explainable Transformer-Based Model with Flow-to-Flow Attention for Commuting Flow Prediction
Luo, Yan, Wan, Zhuoyue, Chen, Yuzhong, Mai, Gengchen, Chung, Fu-lai, Larson, Kent
Understanding the link between urban planning and commuting flows is crucial for guiding urban development and policymaking. This research, bridging computer science and urban studies, addresses the challenge of integrating these fields with their distinct focuses. Traditional urban studies methods, like the gravity and radiation models, often underperform in complex scenarios due to their limited handling of multiple variables and reliance on overly simplistic and unrealistic assumptions, such as spatial isotropy. While deep learning models offer improved accuracy, their black-box nature poses a trade-off between performance and explainability -- both vital for analyzing complex societal phenomena like commuting flows. To address this, we introduce TransFlower, an explainable, transformer-based model employing flow-to-flow attention to predict urban commuting patterns. It features a geospatial encoder with an anisotropy-aware relative location encoder for nuanced flow representation. Following this, the transformer-based flow predictor enhances this by leveraging attention mechanisms to efficiently capture flow interactions. Our model outperforms existing methods by up to 30.8% Common Part of Commuters, offering insights into mobility dynamics crucial for urban planning and policy decisions.
Prismatic: Interactive Multi-View Cluster Analysis of Concept Stocks
Kam-Kwai, Wong, Luo, Yan, Yue, Xuanwu, Chen, Wei, Qu, Huamin
Prismatic enables interactive cluster have developed hierarchical clusters (e.g., economic sectors analysis with three key analytical processes: 1) cluster generation such as energy and real estate) qualitatively to describe the by holistically overviewing the dynamic data-driven affinity of different business entities based on their market clusters, 2) cluster exploration by contextualizing the clusters coverage and product specialization [2]. To address rapid with business relational knowledge, and 3) cluster validation market changes, professional traders have introduced concept by analyzing temporal correlation patterns at different time stocks [3], hereafter "concepts," to symbolize companies with scales and time horizons. Qualitative analysis within Prismatic shared business operations or similar business models in the relies on business relational knowledge formulated in a multilayer short term. Entities within the cluster are influenced by similar network. We employed a multi-view clustering method sets of economic factors that induce business-specific risks and to consolidate the multiple facets and augment correlationbased opportunities.
Learning to Predict Gradients for Semi-Supervised Continual Learning
Luo, Yan, Wong, Yongkang, Kankanhalli, Mohan, Zhao, Qi
A key challenge for machine intelligence is to learn new visual concepts without forgetting the previously acquired knowledge. Continual learning is aimed towards addressing this challenge. However, there is a gap between existing supervised continual learning and human-like intelligence, where human is able to learn from both labeled and unlabeled data. How unlabeled data affects learning and catastrophic forgetting in the continual learning process remains unknown. To explore these issues, we formulate a new semi-supervised continual learning method, which can be generically applied to existing continual learning models. Specifically, a novel gradient learner learns from labeled data to predict gradients on unlabeled data. Hence, the unlabeled data could fit into the supervised continual learning method. Different from conventional semi-supervised settings, we do not hypothesize that the underlying classes, which are associated to the unlabeled data, are known to the learning process. In other words, the unlabeled data could be very distinct from the labeled data. We evaluate the proposed method on mainstream continual learning, adversarial continual learning, and semi-supervised learning tasks. The proposed method achieves state-of-the-art performance on classification accuracy and backward transfer in the continual learning setting while achieving desired performance on classification accuracy in the semi-supervised learning setting. This implies that the unlabeled images can enhance the generalizability of continual learning models on the predictive ability on unseen data and significantly alleviate catastrophic forgetting. The code is available at \url{https://github.com/luoyan407/grad_prediction.git}.
A New Task: Deriving Semantic Class Targets for the Physical Sciences
Bowles, Micah, Tang, Hongming, Vardoulaki, Eleni, Alexander, Emma L., Luo, Yan, Rudnick, Lawrence, Walmsley, Mike, Porter, Fiona, Scaife, Anna M. M., Slijepcevic, Inigo Val, Segal, Gary
We define deriving semantic class targets as a novel multi-modal task. By doing so, we aim to improve classification schemes in the physical sciences which can be severely abstracted and obfuscating. We address this task for upcoming radio astronomy surveys and present the derived semantic radio galaxy morphology class targets.