Goto

Collaborating Authors

 Luo, Xukun


A Bidirectional Tree Tagging Scheme for Joint Medical Relation Extraction

arXiv.org Artificial Intelligence

Joint medical relation extraction refers to extracting triples, composed of entities and relations, from the medical text with a single model. One of the solutions is to convert this task into a sequential tagging task. However, in the existing works, the methods of representing and tagging the triples in a linear way failed to the overlapping triples, and the methods of organizing the triples as a graph faced the challenge of large computational effort. In this paper, inspired by the tree-like relation structures in the medical text, we propose a novel scheme called Bidirectional Tree Tagging (BiTT) to form the medical relation triples into two two binary trees and convert the trees into a word-level tags sequence. Based on BiTT scheme, we develop a joint relation extraction model to predict the BiTT tags and further extract medical triples efficiently. Our model outperforms the best baselines by 2.0\% and 2.5\% in F1 score on two medical datasets. What's more, the models with our BiTT scheme also obtain promising results in three public datasets of other domains.


A Sequence Tagging based Framework for Few-Shot Relation Extraction

arXiv.org Artificial Intelligence

Relation Extraction (RE) refers to extracting the relation triples in the input text. Existing neural work based systems for RE rely heavily on manually labeled training data, but there are still a lot of domains where sufficient labeled data does not exist. Inspired by the distance-based few-shot named entity recognition methods, we put forward the definition of the few-shot RE task based on the sequence tagging joint extraction approaches, and propose a few-shot RE framework for the task. Besides, we apply two actual sequence tagging models to our framework (called Few-shot TPLinker and Few-shot BiTT), and achieves solid results on two few-shot RE tasks constructed from a public dataset.