Luo, Xiaoliang
Beyond Human-Like Processing: Large Language Models Perform Equivalently on Forward and Backward Scientific Text
Luo, Xiaoliang, Ramscar, Michael, Love, Bradley C.
The impressive performance of large language models (LLMs) has led to their consideration as models of human language processing. Instead, we suggest that the success of LLMs arises from the flexibility of the transformer learning architecture. To evaluate this conjecture, we trained LLMs on scientific texts that were either in a forward or backward format. Despite backward text being inconsistent with the structure of human languages, we found that LLMs performed equally well in either format on a neuroscience benchmark, eclipsing human expert performance for both forward and backward orders. Our results are consistent with the success of transformers across diverse domains, such as weather prediction and protein design. This widespread success is attributable to LLM's ability to extract predictive patterns from any sufficiently structured input. Given their generality, we suggest caution in interpreting LLM's success in linguistic tasks as evidence for human-like mechanisms.
Large language models surpass human experts in predicting neuroscience results
Luo, Xiaoliang, Rechardt, Akilles, Sun, Guangzhi, Nejad, Kevin K., Yáñez, Felipe, Yilmaz, Bati, Lee, Kangjoo, Cohen, Alexandra O., Borghesani, Valentina, Pashkov, Anton, Marinazzo, Daniele, Nicholas, Jonathan, Salatiello, Alessandro, Sucholutsky, Ilia, Minervini, Pasquale, Razavi, Sepehr, Rocca, Roberta, Yusifov, Elkhan, Okalova, Tereza, Gu, Nianlong, Ferianc, Martin, Khona, Mikail, Patil, Kaustubh R., Lee, Pui-Shee, Mata, Rui, Myers, Nicholas E., Bizley, Jennifer K, Musslick, Sebastian, Bilgin, Isil Poyraz, Niso, Guiomar, Ales, Justin M., Gaebler, Michael, Murty, N Apurva Ratan, Loued-Khenissi, Leyla, Behler, Anna, Hall, Chloe M., Dafflon, Jessica, Bao, Sherry Dongqi, Love, Bradley C.
Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts. To evaluate this possibility, we created BrainBench, a forward-looking benchmark for predicting neuroscience results. We find that LLMs surpass experts in predicting experimental outcomes. BrainGPT, an LLM we tuned on the neuroscience literature, performed better yet. Like human experts, when LLMs were confident in their predictions, they were more likely to be correct, which presages a future where humans and LLMs team together to make discoveries. Our approach is not neuroscience-specific and is transferable to other knowledge-intensive endeavors.
The perceptual boost of visual attention is task-dependent in naturalistic settings
Smith, Freddie Bickford, Luo, Xiaoliang, Roads, Brett D., Love, Bradley C.
Attentional modulation of neural representations is known to enhance processing of task-relevant visual information. Is the resulting perceptual boost task-dependent in naturalistic settings? We aim to answer this with a large-scale computational experiment. First we design a series of visual tasks, each consisting of classifying images from a particular task set (group of image categories). The nature of a given task is determined by which categories are included in the task set. Then on each task we compare the accuracy of an attention-augmented neural network to that of an attention-free counterpart. We show that, all else being equal, the performance impact of attention is stronger with increasing task-set difficulty, weaker with increasing task-set size, and weaker with increasing perceptual similarity within a task set.