Luo, Xiangde
Cycle-Consistent Bridge Diffusion Model for Accelerated MRI Reconstruction
Song, Tao, Wu, Yicheng, Hu, Minhao, Luo, Xiangde, Luo, Guoting, Wang, Guotai, Guo, Yi, Xu, Feng, Zhang, Shaoting
Accelerated MRI reconstruction techniques aim to reduce examination time while maintaining high image fidelity, which is highly desirable in clinical settings for improving patient comfort and hospital efficiency. Existing deep learning methods typically reconstruct images from under-sampled data with traditional reconstruction approaches, but they still struggle to provide high-fidelity results. Diffusion models show great potential to improve fidelity of generated images in recent years. However, their inference process starting with a random Gaussian noise introduces instability into the results and usually requires thousands of sampling steps, resulting in sub-optimal reconstruction quality and low efficiency. To address these challenges, we propose Cycle-Consistent Bridge Diffusion Model (CBDM). CBDM employs two bridge diffusion models to construct a cycle-consistent diffusion process with a consistency loss, enhancing the fine-grained details of reconstructed images and reducing the number of diffusion steps. Moreover, CBDM incorporates a Contourlet Decomposition Embedding Module (CDEM) which captures multi-scale structural texture knowledge in images through frequency domain decomposition pyramids and directional filter banks to improve structural fidelity. Extensive experiments demonstrate the superiority of our model by higher reconstruction quality and fewer training iterations, achieving a new state of the art for accelerated MRI reconstruction in both fastMRI and IXI datasets.
Cross Group Attention and Group-wise Rolling for Multimodal Medical Image Synthesis
Song, Tao, Wu, Yicheng, Hu, Minhao, Luo, Xiangde, Wei, Linda, Wang, Guotai, Guo, Yi, Xu, Feng, Zhang, Shaoting
Multimodal MR image synthesis aims to generate missing modality image by fusing and mapping a few available MRI data. Most existing approaches typically adopt an image-to-image translation scheme. However, these methods often suffer from sub-optimal performance due to the spatial misalignment between different modalities while they are typically treated as input channels. Therefore, in this paper, we propose an Adaptive Group-wise Interaction Network (AGI-Net) that explores both inter-modality and intra-modality relationships for multimodal MR image synthesis. Specifically, groups are first pre-defined along the channel dimension and then we perform an adaptive rolling for the standard convolutional kernel to capture inter-modality spatial correspondences. At the same time, a cross-group attention module is introduced to fuse information across different channel groups, leading to better feature representation. We evaluated the effectiveness of our model on the publicly available IXI and BraTS2023 datasets, where the AGI-Net achieved state-of-the-art performance for multimodal MR image synthesis.
Asymmetric Co-Training with Explainable Cell Graph Ensembling for Histopathological Image Classification
Yang, Ziqi, Li, Zhongyu, Liu, Chen, Luo, Xiangde, Wang, Xingguang, Xu, Dou, Li, Chaoqun, Qin, Xiaoying, Yang, Meng, Jin, Long
Convolutional neural networks excel in histopathological image classification, yet their pixel-level focus hampers explainability. Conversely, emerging graph convolutional networks spotlight cell-level features and medical implications. However, limited by their shallowness and suboptimal use of high-dimensional pixel data, GCNs underperform in multi-class histopathological image classification. To make full use of pixel-level and cell-level features dynamically, we propose an asymmetric co-training framework combining a deep graph convolutional network and a convolutional neural network for multi-class histopathological image classification. To improve the explainability of the entire framework by embedding morphological and topological distribution of cells, we build a 14-layer deep graph convolutional network to handle cell graph data. For the further utilization and dynamic interactions between pixel-level and cell-level information, we also design a co-training strategy to integrate the two asymmetric branches. Notably, we collect a private clinically acquired dataset termed LUAD7C, including seven subtypes of lung adenocarcinoma, which is rare and more challenging. We evaluated our approach on the private LUAD7C and public colorectal cancer datasets, showcasing its superior performance, explainability, and generalizability in multi-class histopathological image classification.
Plug-and-play Shape Refinement Framework for Multi-site and Lifespan Brain Skull Stripping
Li, Yunxiang, Dan, Ruilong, Wang, Shuai, Cao, Yifan, Luo, Xiangde, Tan, Chenghao, Jia, Gangyong, Zhou, Huiyu, Zhang, You, Wang, Yaqi, Wang, Li
Skull stripping is a crucial prerequisite step in the analysis of brain magnetic resonance images (MRI). Although many excellent works or tools have been proposed, they suffer from low generalization capability. For instance, the model trained on a dataset with specific imaging parameters cannot be well applied to other datasets with different imaging parameters. Especially, for the lifespan datasets, the model trained on an adult dataset is not applicable to an infant dataset due to the large domain difference. To address this issue, numerous methods have been proposed, where domain adaptation based on feature alignment is the most common. Unfortunately, this method has some inherent shortcomings, which need to be retrained for each new domain and requires concurrent access to the input images of both domains. In this paper, we design a plug-and-play shape refinement (PSR) framework for multi-site and lifespan skull stripping. To deal with the domain shift between multi-site lifespan datasets, we take advantage of the brain shape prior, which is invariant to imaging parameters and ages. Experiments demonstrate that our framework can outperform the state-of-the-art methods on multi-site lifespan datasets.