Goto

Collaborating Authors

 Luo, Lei


Towards Better Spherical Sliced-Wasserstein Distance Learning with Data-Adaptive Discriminative Projection Direction

arXiv.org Artificial Intelligence

Spherical Sliced-Wasserstein (SSW) has recently been proposed to measure the discrepancy between spherical data distributions in various fields, such as geology, medical domains, computer vision, and deep representation learning. However, in the original SSW, all projection directions are treated equally, which is too idealistic and cannot accurately reflect the importance of different projection directions for various data distributions. To address this issue, we propose a novel data-adaptive Discriminative Spherical Sliced-Wasserstein (DSSW) distance, which utilizes a projected energy function to determine the discriminative projection direction for SSW. In our new DSSW, we introduce two types of projected energy functions to generate the weights for projection directions with complete theoretical guarantees. The first type employs a non-parametric deterministic function that transforms the projected Wasserstein distance into its corresponding weight in each projection direction. This improves the performance of the original SSW distance with negligible additional computational overhead. The second type utilizes a neural network-induced function that learns the projection direction weight through a parameterized neural network based on data projections. This further enhances the performance of the original SSW distance with less extra computational overhead. Finally, we evaluate the performance of our proposed DSSW by comparing it with several state-of-the-art methods across a variety of machine learning tasks, including gradient flows, density estimation on real earth data, and self-supervised learning.


The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge: Tasks, Results and Findings

arXiv.org Artificial Intelligence

The ISCSLP 2024 Conversational Voice Clone (CoVoC) Challenge aims to benchmark and advance zero-shot spontaneous style voice cloning, particularly focusing on generating spontaneous behaviors in conversational speech. The challenge comprises two tracks: an unconstrained track without limitation on data and model usage, and a constrained track only allowing the use of constrained open-source datasets. A 100-hour high-quality conversational speech dataset is also made available with the challenge. This paper details the data, tracks, submitted systems, evaluation results, and findings.


UnSAMFlow: Unsupervised Optical Flow Guided by Segment Anything Model

arXiv.org Artificial Intelligence

Traditional unsupervised optical flow methods are vulnerable to occlusions and motion boundaries due to lack of object-level information. Therefore, we propose UnSAMFlow, an unsupervised flow network that also leverages object information from the latest foundation model Segment Anything Model (SAM). We first include a self-supervised semantic augmentation module tailored to SAM masks. We also analyze the poor gradient landscapes of traditional smoothness losses and propose a new smoothness definition based on homography instead. A simple yet effective mask feature module has also been added to further aggregate features on the object level. With all these adaptations, our method produces clear optical flow estimation with sharp boundaries around objects, which outperforms state-of-the-art methods on both KITTI and Sintel datasets. Our method also generalizes well across domains and runs very efficiently.


Sampling Through the Lens of Sequential Decision Making

arXiv.org Artificial Intelligence

Sampling is ubiquitous in machine learning methodologies. Due to the growth of large datasets and model complexity, we want to learn and adapt the sampling process while training a representation. Towards achieving this grand goal, a variety of sampling techniques have been proposed. However, most of them either use a fixed sampling scheme or adjust the sampling scheme based on simple heuristics. They cannot choose the best sample for model training in different stages. Inspired by "Think, Fast and Slow" (System 1 and System 2) in cognitive science, we propose a reward-guided sampling strategy called Adaptive Sample with Reward (ASR) to tackle this challenge. To the best of our knowledge, this is the first work utilizing reinforcement learning (RL) to address the sampling problem in representation learning. Our approach optimally adjusts the sampling process to achieve optimal performance. We explore geographical relationships among samples by distance-based sampling to maximize overall cumulative reward. We apply ASR to the long-standing sampling problems in similarity-based loss functions. Empirical results in information retrieval and clustering demonstrate ASR's superb performance across different datasets. We also discuss an engrossing phenomenon which we name as "ASR gravity well" in experiments.


Denoising Multi-Similarity Formulation: A Self-paced Curriculum-Driven Approach for Robust Metric Learning

arXiv.org Artificial Intelligence

Deep Metric Learning (DML) is a group of techniques that aim to measure the similarity between objects through the neural network. Although the number of DML methods has rapidly increased in recent years, most previous studies cannot effectively handle noisy data, which commonly exists in practical applications and often leads to serious performance deterioration. To overcome this limitation, in this paper, we build a connection between noisy samples and hard samples in the framework of self-paced learning, and propose a \underline{B}alanced \underline{S}elf-\underline{P}aced \underline{M}etric \underline{L}earning (BSPML) algorithm with a denoising multi-similarity formulation, where noisy samples are treated as extremely hard samples and adaptively excluded from the model training by sample weighting. Especially, due to the pairwise relationship and a new balance regularization term, the sub-problem \emph{w.r.t.} sample weights is a nonconvex quadratic function. To efficiently solve this nonconvex quadratic problem, we propose a doubly stochastic projection coordinate gradient algorithm. Importantly, we theoretically prove the convergence not only for the doubly stochastic projection coordinate gradient algorithm, but also for our BSPML algorithm. Experimental results on several standard data sets demonstrate that our BSPML algorithm has better generalization ability and robustness than the state-of-the-art robust DML approaches.


Adaptive Hierarchical Similarity Metric Learning with Noisy Labels

arXiv.org Artificial Intelligence

Deep Metric Learning (DML) plays a critical role in various machine learning tasks. However, most existing deep metric learning methods with binary similarity are sensitive to noisy labels, which are widely present in real-world data. Since these noisy labels often cause severe performance degradation, it is crucial to enhance the robustness and generalization ability of DML. In this paper, we propose an Adaptive Hierarchical Similarity Metric Learning method. It considers two noise-insensitive information, \textit{i.e.}, class-wise divergence and sample-wise consistency. Specifically, class-wise divergence can effectively excavate richer similarity information beyond binary in modeling by taking advantage of Hyperbolic metric learning, while sample-wise consistency can further improve the generalization ability of the model using contrastive augmentation. More importantly, we design an adaptive strategy to integrate this information in a unified view. It is noteworthy that the new method can be extended to any pair-based metric loss. Extensive experimental results on benchmark datasets demonstrate that our method achieves state-of-the-art performance compared with current deep metric learning approaches.


Bilevel Distance Metric Learning for Robust Image Recognition

Neural Information Processing Systems

Metric learning, aiming to learn a discriminative Mahalanobis distance matrix M that can effectively reflect the similarity between data samples, has been widely studied in various image recognition problems. Most of the existing metric learning methods input the features extracted directly from the original data in the preprocess phase. What's worse, these features usually take no consideration of the local geometrical structure of the data and the noise that exists in the data, thus they may not be optimal for the subsequent metric learning task. In this paper, we integrate both feature extraction and metric learning into one joint optimization framework and propose a new bilevel distance metric learning model. Specifically, the lower level characterizes the intrinsic data structure using graph regularized sparse coefficients, while the upper level forces the data samples from the same class to be close to each other and pushes those from different classes far away. In addition, leveraging the KKT conditions and the alternating direction method (ADM), we derive an efficient algorithm to solve the proposed new model. Extensive experiments on various occluded datasets demonstrate the effectiveness and robustness of our method.


Bilevel Distance Metric Learning for Robust Image Recognition

Neural Information Processing Systems

Metric learning, aiming to learn a discriminative Mahalanobis distance matrix M that can effectively reflect the similarity between data samples, has been widely studied in various image recognition problems. Most of the existing metric learning methods input the features extracted directly from the original data in the preprocess phase. What's worse, these features usually take no consideration of the local geometrical structure of the data and the noise existed in the data, thus they may not be optimal for the subsequent metric learning task. In this paper, we integrate both feature extraction and metric learning into one joint optimization framework and propose a new bilevel distance metric learning model. Specifically, the lower level characterizes the intrinsic data structure using graph regularized sparse coefficients, while the upper level forces the data samples from the same class to be close to each other and pushes those from different classes far away. In addition, leveraging the KKT conditions and the alternating direction method (ADM), we derive an efficient algorithm to solve the proposed new model. Extensive experiments on various occluded datasets demonstrate the effectiveness and robustness of our method.


Matrix Variate Gaussian Mixture Distribution Steered Robust Metric Learning

AAAI Conferences

Mahalanobis Metric Learning (MML) has been actively studied recently in machine learning community. Most of existing MML methods aim to learn a powerful Mahalanobis distance for computing similarity of two objects. More recently, multiple methods use matrix norm regularizers to constrain the learned distance matrixMto improve the performance. However, in real applications, the structure of the distance matrix M is complicated and cannot be characterized well by the simple matrix norm. In this paper, we propose a novel robust metric learning method with learning the structure of the distance matrix in a new and natural way. We partition M into blocks and consider each block as a random matrix variate, which is fitted by matrix variate Gaussian mixture distribution. Different from existing methods, our model has no any assumption on M and automatically learns the structure of M from the real data, where the distance matrix M often is neither sparse nor low-rank. We design an effective algorithm to optimize the proposed model and establish the corresponding theoretical guarantee. We conduct extensive evaluations on the real-world data. Experimental results show our method consistently outperforms the related state-of-the-art methods.