Luo, Jin
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Its behavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Itsbehavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Object-Based Analog VLSI Vision Circuits
Koch, Christof, Mathur, Binnal, Liu, Shih-Chii, Harris, John G., Luo, Jin, Sivilotti, Massimo
We describe two successfully working, analog VLSI vision circuits that move beyond pixel-based early vision algorithms. One circuit, implementing the dynamic wires model, provides for dedicated lines of communication among groups of pixels that share a common property. The chip uses the dynamic wires model to compute the arclength of visual contours. Another circuit labels all points inside a given contour with one voltage and all other with another voltage. Its behavior is very robust, since small breaks in contours are automatically sealed, providing for Figure-Ground segregation in a noisy environment. Both chips are implemented using networks of resistors and switches and represent a step towards object level processing since a single voltage value encodes the property of an ensemble of pixels.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate visionalgorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossingsusing two resistive grids with different spaceconstants. Todemonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Real-Time Computer Vision and Robotics Using Analog VLSI Circuits
Koch, Christof, Bair, Wyeth, Harris, John G., Horiuchi, Timothy K., Hsu, Andrew, Luo, Jin
The long-term goal of our laboratory is the development of analog resistive network-based VLSI implementations of early and intermediate vision algorithms. We demonstrate an experimental circuit for smoothing and segmenting noisy and sparse depth data using the resistive fuse and a 1-D edge-detection circuit for computing zero-crossings using two resistive grids with different spaceconstants. To demonstrate the robustness of our algorithms and of the fabricated analog CMOS VLSI chips, we are mounting these circuits onto small mobile vehicles operating in a real-time, laboratory environment.
Computing Motion Using Resistive Networks
Koch, Christof, Luo, Jin, Mead, Carver, Hutchinson, James
We open our eyes and we "see" the world in all its color, brightness, and movement. Yet, we have great difficulties when trying to endow our machines with similar abilities. In this paper we shall describe recent developments in the theory of early vision which lead from the formulation of the motion problem as an illposed oneto its solution by minimizing certain "cost" functions. These cost or energy functions can be mapped onto simple analog and digital resistive networks. Thus, we shall see how the optical flow can be computed by injecting currents into resistive networks and recording the resulting stationary voltage distribution at each node. These networks can be implemented in cMOS VLSI circuits and represent plausible candidates for biological vision systems. APERTURE PROBLEM AND SMOOTHNESS ASSUMPTION In this study, we use intensity-based schemes for recovering motion.