Goto

Collaborating Authors

 Luo, Jian


Accelerating PDE Data Generation via Differential Operator Action in Solution Space

arXiv.org Artificial Intelligence

Recent advancements in data-driven approaches, such as Neural Operator (NO), have demonstrated their effectiveness in reducing the solving time of Partial Differential Equations (PDEs). However, one major challenge faced by these approaches is the requirement for a large amount of high-precision training data, which needs significant computational costs during the generation process. To address this challenge, we propose a novel PDE dataset generation algorithm, namely Differential Operator Action in Solution space (DiffOAS), which speeds up the data generation process and enhances the precision of the generated data simultaneously. Specifically, DiffOAS obtains a few basic PDE solutions and then combines them to get solutions. It applies differential operators on these solutions, a process we call 'operator action', to efficiently generate precise PDE data points. Theoretical analysis shows that the time complexity of DiffOAS method is one order lower than the existing generation method. Experimental results show that DiffOAS accelerates the generation of large-scale datasets with 10,000 instances by 300 times. Even with just 5% of the generation time, NO trained on the data generated by DiffOAS exhibits comparable performance to that using the existing generation method, which highlights the efficiency of DiffOAS.


BC4LLM: Trusted Artificial Intelligence When Blockchain Meets Large Language Models

arXiv.org Artificial Intelligence

In recent years, artificial intelligence (AI) and machine learning (ML) are reshaping society's production methods and productivity, and also changing the paradigm of scientific research. Among them, the AI language model represented by ChatGPT has made great progress. Such large language models (LLMs) serve people in the form of AI-generated content (AIGC) and are widely used in consulting, healthcare, and education. However, it is difficult to guarantee the authenticity and reliability of AIGC learning data. In addition, there are also hidden dangers of privacy disclosure in distributed AI training. Moreover, the content generated by LLMs is difficult to identify and trace, and it is difficult to cross-platform mutual recognition. The above information security issues in the coming era of AI powered by LLMs will be infinitely amplified and affect everyone's life. Therefore, we consider empowering LLMs using blockchain technology with superior security features to propose a vision for trusted AI. This paper mainly introduces the motivation and technical route of blockchain for LLM (BC4LLM), including reliable learning corpus, secure training process, and identifiable generated content. Meanwhile, this paper also reviews the potential applications and future challenges, especially in the frontier communication networks field, including network resource allocation, dynamic spectrum sharing, and semantic communication. Based on the above work combined and the prospect of blockchain and LLMs, it is expected to help the early realization of trusted AI and provide guidance for the academic community.


Dynamic Alignment Mask CTC: Improved Mask-CTC with Aligned Cross Entropy

arXiv.org Artificial Intelligence

Because of predicting all the target tokens in parallel, the non-autoregressive models greatly improve the decoding efficiency of speech recognition compared with traditional autoregressive models. In this work, we present dynamic alignment Mask CTC, introducing two methods: (1) Aligned Cross Entropy (AXE), finding the monotonic alignment that minimizes the cross-entropy loss through dynamic programming, (2) Dynamic Rectification, creating new training samples by replacing some masks with model predicted tokens. The AXE ignores the absolute position alignment between prediction and ground truth sentence and focuses on tokens matching in relative order. The dynamic rectification method makes the model capable of simulating the non-mask but possible wrong tokens, even if they have high confidence. Our experiments on WSJ dataset demonstrated that not only AXE loss but also the rectification method could improve the WER performance of Mask CTC.


Counter-Transitivity in Argument Ranking Semantics

AAAI Conferences

The principle of counter-transitivity plays a vital role in argumentation. It states that an argument is strong when its attackers are weak, and is weak when its attackers are strong. In this work, we develop a formal theory about the argument ranking semantics based on this principle. Three approaches, quantity-based, quality-based and the unity of them, are defined to implement the principle. Then, we show an iterative refinement algorithm for capturing the ranking on arguments based on the recursive nature of the principle.


Attacker and Defender Counting Approach for Abstract Argumentation

arXiv.org Artificial Intelligence

In Dung's abstract argumentation, arguments are either acceptable or unacceptable, given a chosen notion of acceptability. This gives a coarse way to compare arguments. In this paper, we propose a counting approach for a more fine-gained assessment to arguments by counting the number of their respective attackers and defenders based on argument graph and argument game. An argument is more acceptable if the proponent puts forward more number of defenders for it and the opponent puts forward less number of attackers against it. We show that our counting model has two well-behaved properties: normalization and convergence. Then, we define a counting semantics based on this model, and investigate some general properties of the semantics.


Argument Ranking with Categoriser Function

arXiv.org Artificial Intelligence

Recently, ranking-based semantics is proposed to rank-order arguments from the most acceptable to the weakest one(s), which provides a graded assessment to arguments. In general, the ranking on arguments is derived from the strength values of the arguments. Categoriser function is a common approach that assigns a strength value to a tree of arguments. When it encounters an argument system with cycles, then the categoriser strength is the solution of the non-linear equations. However, there is no detail about the existence and uniqueness of the solution, and how to find the solution (if exists). In this paper, we will cope with these issues via fixed point technique. In addition, we define the categoriser-based ranking semantics in light of categoriser strength, and investigate some general properties of it. Finally, the semantics is shown to satisfy some of the axioms that a ranking-based semantics should satisfy.


Computing Preferences Based on Agents' Beliefs

AAAI Conferences

The knowledgebase uncertainty and the argument preferences are considered in this paper. The uncertainty is captured by weighted satisfiability degree, while a preference relation over arguments is derived by the beliefs of an agent.


Utilizing Partial Policies for Identifying Equivalence of Behavioral Models

AAAI Conferences

We present a novel approach for identifying exact and approximate behavioral equivalence between models of agents. This is significant because both decision making and game play in multiagent settings must contend with behavioral models of other agents in order to predict their actions. One approach that reduces the complexity of the model space is to group models that are behaviorally equivalent. Identifying equivalence between models requires solving them and comparing entire policy trees. Because the trees grow exponentially with the horizon, our approach is to focus on partial policy trees for comparison and determining the distance between updated beliefs at the leaves of the trees. We propose a principled way to determine how much of the policy trees to consider, which trades off solution quality for efficiency. We investigate this approach in the context of the interactive dynamic influence diagram and evaluate its performance.