Luo, Jiachen
Bimodal Connection Attention Fusion for Speech Emotion Recognition
Luo, Jiachen, Phan, Huy, Wang, Lin, Reiss, Joshua D.
Multi-modal emotion recognition is challenging due to the difficulty of extracting features that capture subtle emotional differences. Understanding multi-modal interactions and connections is key to building effective bimodal speech emotion recognition systems. In this work, we propose Bimodal Connection Attention Fusion (BCAF) method, which includes three main modules: the interactive connection network, the bimodal attention network, and the correlative attention network. The interactive connection network uses an encoder-decoder architecture to model modality connections between audio and text while leveraging modality-specific features. The bimodal attention network enhances semantic complementation and exploits intra- and inter-modal interactions. The correlative attention network reduces cross-modal noise and captures correlations between audio and text. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed BCAF method outperforms existing state-of-the-art baselines.
Heterogeneous bimodal attention fusion for speech emotion recognition
Luo, Jiachen, Phan, Huy, Wang, Lin, Reiss, Joshua
Multi-modal emotion recognition in conversations is a challenging problem due to the complex and complementary interactions between different modalities. Audio and textual cues are particularly important for understanding emotions from a human perspective. Most existing studies focus on exploring interactions between audio and text modalities at the same representation level. However, a critical issue is often overlooked: the heterogeneous modality gap between low-level audio representations and high-level text representations. To address this problem, we propose a novel framework called Heterogeneous Bimodal Attention Fusion (HBAF) for multi-level multi-modal interaction in conversational emotion recognition. The proposed method comprises three key modules: the uni-modal representation module, the multi-modal fusion module, and the inter-modal contrastive learning module. The uni-modal representation module incorporates contextual content into low-level audio representations to bridge the heterogeneous multi-modal gap, enabling more effective fusion. The multi-modal fusion module uses dynamic bimodal attention and a dynamic gating mechanism to filter incorrect cross-modal relationships and fully exploit both intra-modal and inter-modal interactions. Finally, the inter-modal contrastive learning module captures complex absolute and relative interactions between audio and text modalities. Experiments on the MELD and IEMOCAP datasets demonstrate that the proposed HBAF method outperforms existing state-of-the-art baselines.
deep learning of segment-level feature representation for speech emotion recognition in conversations
Luo, Jiachen, Phan, Huy, Reiss, Joshua
Accurately detecting emotions in conversation is a necessary yet challenging task due to the complexity of emotions and dynamics in dialogues. The emotional state of a speaker can be influenced by many different factors, such as interlocutor stimulus, dialogue scene, and topic. In this work, we propose a conversational speech emotion recognition method to deal with capturing attentive contextual dependency and speaker-sensitive interactions. First, we use a pretrained VGGish model to extract segment-based audio representation in individual utterances. Second, an attentive bi-directional gated recurrent unit (GRU) models contextual-sensitive information and explores intra- and inter-speaker dependencies jointly in a dynamic manner. The experiments conducted on the standard conversational dataset MELD demonstrate the effectiveness of the proposed method when compared against state-of the-art methods.