Luo, Haotian
Panacea: Mitigating Harmful Fine-tuning for Large Language Models via Post-fine-tuning Perturbation
Wang, Yibo, Huang, Tiansheng, Shen, Li, Yao, Huanjin, Luo, Haotian, Liu, Rui, Tan, Naiqiang, Huang, Jiaxing, Tao, Dacheng
Harmful fine-tuning attack introduces significant security risks to the fine-tuning services. Mainstream defenses aim to vaccinate the model such that the later harmful fine-tuning attack is less effective. However, our evaluation results show that such defenses are fragile -- with a few fine-tuning steps, the model still can learn the harmful knowledge. To this end, we do further experiment and find that an embarrassingly simple solution -- adding purely random perturbations to the fine-tuned model, can recover the model from harmful behavior, though it leads to a degradation in the model's fine-tuning performance. To address the degradation of fine-tuning performance, we further propose Panacea, which optimizes an adaptive perturbation that will be applied to the model after fine-tuning. Panacea maintains model's safety alignment performance without compromising downstream fine-tuning performance. Comprehensive experiments are conducted on different harmful ratios, fine-tuning tasks and mainstream LLMs, where the average harmful scores are reduced by up-to 21.5%, while maintaining fine-tuning performance. As a by-product, we analyze the optimized perturbation and show that different layers in various LLMs have distinct safety coefficients. Source code available at https://github.com/w-yibo/Panacea
O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning
Luo, Haotian, Shen, Li, He, Haiying, Wang, Yibo, Liu, Shiwei, Li, Wei, Tan, Naiqiang, Cao, Xiaochun, Tao, Dacheng
Recently, long-thought reasoning LLMs, such as OpenAI's O1, adopt extended reasoning processes similar to how humans ponder over complex problems. This reasoning paradigm significantly enhances the model's problem-solving abilities and has achieved promising results. However, long-thought reasoning process leads to a substantial increase in inference time. A pressing challenge is reducing the inference overhead of long-thought LLMs while ensuring accuracy. In this paper, we experimentally demonstrate that long-thought reasoning models struggle to effectively allocate token budgets based on problem difficulty and reasoning redundancies. To address this, we propose Length-Harmonizing Fine-Tuning (O1-Pruner), aiming at minimizing reasoning overhead while maintaining accuracy. This effective fine-tuning method first estimates the LLM's baseline performance through pre-sampling and then uses RL-style fine-tuning to encourage the model to generate shorter reasoning processes under accuracy constraints. This allows the model to achieve efficient reasoning with lower redundancy while maintaining accuracy. Experiments on various mathematical reasoning benchmarks show that O1-Pruner not only significantly reduces inference overhead but also achieves higher accuracy, providing a novel and promising solution to this challenge. Our code is coming soon at https://github.com/StarDewXXX/O1-Pruner
Latent Distance Guided Alignment Training for Large Language Models
Luo, Haotian
Ensuring alignment with human preferences is a crucial characteristic of large language models (LLMs). Presently, the primary alignment methods, RLHF and DPO, require extensive human annotation, which is expensive despite their efficacy. The significant expenses associated with current alignment techniques motivate researchers to investigate the development of annotation-free alignment training methods. In pursuit of improved alignment without relying on external annotation, we introduce Latent Distance Guided Alignment Training (LD-Align). This approach seeks to align the model with a high-quality supervised fine-tune dataset using guidance from a latent space. The latent space is generated through sample reconstruction, akin to auto-encoding. Consequently, we utilize the distance between sample pairs in the latent space to guide DPO-based alignment training. Extensive experimentation and evaluation show the efficacy of our proposed method in achieving notable alignment.
LLM Reasoners: New Evaluation, Library, and Analysis of Step-by-Step Reasoning with Large Language Models
Hao, Shibo, Gu, Yi, Luo, Haotian, Liu, Tianyang, Shao, Xiyan, Wang, Xinyuan, Xie, Shuhua, Ma, Haodi, Samavedhi, Adithya, Gao, Qiyue, Wang, Zhen, Hu, Zhiting
Generating accurate step-by-step reasoning is essential for Large Language Models (LLMs) to address complex problems and enhance robustness and interpretability. Despite the flux of research on developing advanced reasoning approaches, systematically analyzing the diverse LLMs and reasoning strategies in generating reasoning chains remains a significant challenge. The difficulties stem from the lack of two key elements: (1) an automatic method for evaluating the generated reasoning chains on different tasks, and (2) a unified formalism and implementation of the diverse reasoning approaches for systematic comparison. This paper aims to close the gap: (1) We introduce AutoRace for fully automated reasoning chain evaluation. Existing metrics rely on expensive human annotations or pre-defined LLM prompts not adaptable to different tasks. In contrast, AutoRace automatically creates detailed evaluation criteria tailored for each task, and uses GPT-4 for accurate evaluation following the criteria. (2) We develop LLM Reasoners, a library for standardized modular implementation of existing and new reasoning algorithms, under a unified formulation of the search, reward, and world model components. With the new evaluation and library, (3) we conduct extensive study of different reasoning approaches (e.g., CoT, ToT, RAP). The analysis reveals interesting findings about different factors contributing to reasoning, including the reward-guidance, breadth-vs-depth in search, world model, and prompt formats, etc.
PromptAgent: Strategic Planning with Language Models Enables Expert-level Prompt Optimization
Wang, Xinyuan, Li, Chenxi, Wang, Zhen, Bai, Fan, Luo, Haotian, Zhang, Jiayou, Jojic, Nebojsa, Xing, Eric P., Hu, Zhiting
Highly effective, task-specific prompts are often heavily engineered by experts to integrate detailed instructions and domain insights based on a deep understanding of both instincts of large language models (LLMs) and the intricacies of the target task. However, automating the generation of such expert-level prompts remains elusive. Existing prompt optimization methods tend to overlook the depth of domain knowledge and struggle to efficiently explore the vast space of expert-level prompts. Addressing this, we present PromptAgent, an optimization method that autonomously crafts prompts equivalent in quality to those handcrafted by experts. At its core, PromptAgent views prompt optimization as a strategic planning problem and employs a principled planning algorithm, rooted in Monte Carlo tree search, to strategically navigate the expert-level prompt space. Inspired by human-like trial-and-error exploration, PromptAgent induces precise expert-level insights and in-depth instructions by reflecting on model errors and generating constructive error feedback. Such a novel framework allows the agent to iteratively examine intermediate prompts (states), refine them based on error feedbacks (actions), simulate future rewards, and search for high-reward paths leading to expert prompts. We apply PromptAgent to 12 tasks spanning three practical domains: BIG-Bench Hard (BBH), as well as domain-specific and general NLP tasks, showing it significantly outperforms strong Chain-of-Thought and recent prompt optimization baselines. Extensive analyses emphasize its capability to craft expert-level, detailed, and domain-insightful prompts with great efficiency and generalizability.
Vector-Quantized Prompt Learning for Paraphrase Generation
Luo, Haotian, Liu, Yixin, Liu, Peidong, Liu, Xianggen
Deep generative modeling of natural languages has achieved many successes, such as producing fluent sentences and translating from one language into another. However, the development of generative modeling techniques for paraphrase generation still lags behind largely due to the challenges in addressing the complex conflicts between expression diversity and semantic preservation. This paper proposes to generate diverse and high-quality paraphrases by exploiting the pre-trained models with instance-dependent prompts. To learn generalizable prompts, we assume that the number of abstract transforming patterns of paraphrase generation (governed by prompts) is finite and usually not large. Therefore, we present vector-quantized prompts as the cues to control the generation of pre-trained models. Extensive experiments demonstrate that the proposed method achieves new state-of-art results on three benchmark datasets, including Quora, Wikianswers, and MSCOCO. We will release all the code upon acceptance.
ProSG: Using Prompt Synthetic Gradients to Alleviate Prompt Forgetting of RNN-like Language Models
Luo, Haotian, Wu, Kunming, Dai, Cheng, Ding, Sixian, Chen, Xinhao
RNN-like language models are getting renewed attention from NLP researchers in recent years and several models have made significant progress, which demonstrates performance comparable to traditional transformers. However, due to the recurrent nature of RNNs, this kind of language model can only store information in a set of fixed-length state vectors. As a consequence, they still suffer from forgetfulness though after a lot of improvements and optimizations, when given complex instructions or prompts. As the prompted generation is the main and most concerned function of LMs, solving the problem of forgetting in the process of generation is no wonder of vital importance. In this paper, focusing on easing the prompt forgetting during generation, we proposed an architecture to teach the model memorizing prompt during generation by synthetic gradient. To force the model to memorize the prompt, we derive the states that encode the prompt, then transform it into model parameter modification using low-rank gradient approximation, which hard-codes the prompt into model parameters temporarily. We construct a dataset for experiments, and the results have demonstrated the effectiveness of our method in solving the problem of forgetfulness in the process of prompted generation. We will release all the code upon acceptance.