Goto

Collaborating Authors

 Luo, Chuan


SMT(LIA) Sampling with High Diversity

arXiv.org Artificial Intelligence

Satisfiability Modulo Linear Integer Arithmetic, SMT(LIA) for short, is pivotal across various critical domains. Previous research has primarily focused on SMT solving techniques. However, in practical applications such as software and hardware testing, there is a need to generate a diverse set of solutions for use as test inputs. We have developed the first sampling framework that integrates local search with CDCL(T) techniques, named HighDiv, capable of generating a highly diverse set of solutions for constraints under linear integer theory. Initially, in the local search phase, we introduced a novel operator called boundary-aware movement. This operator performs random moves by considering the current state's constraints on variables, thereby enhancing the diversity of variables during the search process. Furthermore, we have conducted an in-depth study of the preprocessing and variable initialization mechanisms within the framework, which significantly enhances the efficiency of subsequent local searches. Lastly, we use the solutions obtained from local search sampling as additional constraints to further explore the solution space using the stochastic CDCL(T) method. Experimental results demonstrate that \HighDiv generates solutions with greater diversity compared to the state-of-the-art SMT(LIA) sampling tool, MeGASampler.


An Advanced Reinforcement Learning Framework for Online Scheduling of Deferrable Workloads in Cloud Computing

arXiv.org Artificial Intelligence

Efficient resource utilization and perfect user experience usually conflict with each other in cloud computing platforms. Great efforts have been invested in increasing resource utilization but trying not to affect users' experience for cloud computing platforms. In order to better utilize the remaining pieces of computing resources spread over the whole platform, deferrable jobs are provided with a discounted price to users. For this type of deferrable jobs, users are allowed to submit jobs that will run for a specific uninterrupted duration in a flexible range of time in the future with a great discount. With these deferrable jobs to be scheduled under the remaining capacity after deploying those on-demand jobs, it remains a challenge to achieve high resource utilization and meanwhile shorten the waiting time for users as much as possible in an online manner. In this paper, we propose an online deferrable job scheduling method called \textit{Online Scheduling for DEferrable jobs in Cloud} (\OSDEC{}), where a deep reinforcement learning model is adopted to learn the scheduling policy, and several auxiliary tasks are utilized to provide better state representations and improve the performance of the model. With the integrated reinforcement learning framework, the proposed method can well plan the deployment schedule and achieve a short waiting time for users while maintaining a high resource utilization for the platform. The proposed method is validated on a public dataset and shows superior performance.


Better Understandings and Configurations in MaxSAT Local Search Solvers via Anytime Performance Analysis

arXiv.org Artificial Intelligence

Though numerous solvers have been proposed for the MaxSAT problem, and the benchmark environment such as MaxSAT Evaluations provides a platform for the comparison of the state-of-the-art solvers, existing assessments were usually evaluated based on the quality, e.g., fitness, of the best-found solutions obtained within a given running time budget. However, concerning solely the final obtained solutions regarding specific time budgets may restrict us from comprehending the behavior of the solvers along the convergence process. This paper demonstrates that Empirical Cumulative Distribution Functions can be used to compare MaxSAT local search solvers' anytime performance across multiple problem instances and various time budgets. The assessment reveals distinctions in solvers' performance and displays that the (dis)advantages of solvers adjust along different running times. This work also exhibits that the quantitative and high variance assessment of anytime performance can guide machines, i.e., automatic configurators, to search for better parameter settings. Our experimental results show that the hyperparameter optimization tool, i.e., SMAC, generally achieves better parameter settings of local search when using the anytime performance as the cost function, compared to using the fitness of the best-found solutions.


Entire Chain Uplift Modeling with Context-Enhanced Learning for Intelligent Marketing

arXiv.org Artificial Intelligence

Uplift modeling, vital in online marketing, seeks to accurately measure the impact of various strategies, such as coupons or discounts, on different users by predicting the Individual Treatment Effect (ITE). In an e-commerce setting, user behavior follows a defined sequential chain, including impression, click, and conversion. Marketing strategies exert varied uplift effects at each stage within this chain, impacting metrics like click-through and conversion rate. Despite its utility, existing research has neglected to consider the inter-task across all stages impacts within a specific treatment and has insufficiently utilized the treatment information, potentially introducing substantial bias into subsequent marketing decisions. We identify these two issues as the chain-bias problem and the treatment-unadaptive problem. This paper introduces the Entire Chain UPlift method with context-enhanced learning (ECUP), devised to tackle these issues. ECUP consists of two primary components: 1) the Entire Chain-Enhanced Network, which utilizes user behavior patterns to estimate ITE throughout the entire chain space, models the various impacts of treatments on each task, and integrates task prior information to enhance context awareness across all stages, capturing the impact of treatment on different tasks, and 2) the Treatment-Enhanced Network, which facilitates fine-grained treatment modeling through bit-level feature interactions, thereby enabling adaptive feature adjustment. Extensive experiments on public and industrial datasets validate ECUPs effectiveness. Moreover, ECUP has been deployed on the Meituan food delivery platform, serving millions of daily active users, with the related dataset released for future research.


Contrastive Learning with Negative Sampling Correction

arXiv.org Artificial Intelligence

As one of the most effective self-supervised representation learning methods, contrastive learning (CL) relies on multiple negative pairs to contrast against each positive pair. In the standard practice of contrastive learning, data augmentation methods are utilized to generate both positive and negative pairs. While existing works have been focusing on improving the positive sampling, the negative sampling process is often overlooked. In fact, the generated negative samples are often polluted by positive samples, which leads to a biased loss and performance degradation. To correct the negative sampling bias, we propose a novel contrastive learning method named Positive-Unlabeled Contrastive Learning (PUCL). PUCL treats the generated negative samples as unlabeled samples and uses information from positive samples to correct bias in contrastive loss. We prove that the corrected loss used in PUCL only incurs a negligible bias compared to the unbiased contrastive loss. PUCL can be applied to general contrastive learning problems and outperforms state-of-the-art methods on various image and graph classification tasks. The code of PUCL is in the supplementary file.


HiNet: Novel Multi-Scenario & Multi-Task Learning with Hierarchical Information Extraction

arXiv.org Artificial Intelligence

Multi-scenario & multi-task learning has been widely applied to many recommendation systems in industrial applications, wherein an effective and practical approach is to carry out multi-scenario transfer learning on the basis of the Mixture-of-Expert (MoE) architecture. However, the MoE-based method, which aims to project all information in the same feature space, cannot effectively deal with the complex relationships inherent among various scenarios and tasks, resulting in unsatisfactory performance. To tackle the problem, we propose a Hierarchical information extraction Network (HiNet) for multi-scenario and multi-task recommendation, which achieves hierarchical extraction based on coarse-to-fine knowledge transfer scheme. The multiple extraction layers of the hierarchical network enable the model to enhance the capability of transferring valuable information across scenarios while preserving specific features of scenarios and tasks. Furthermore, a novel scenario-aware attentive network module is proposed to model correlations between scenarios explicitly. Comprehensive experiments conducted on real-world industrial datasets from Meituan Meishi platform demonstrate that HiNet achieves a new state-of-the-art performance and significantly outperforms existing solutions. HiNet is currently fully deployed in two scenarios and has achieved 2.87% and 1.75% order quantity gain respectively.


Feature Decomposition for Reducing Negative Transfer: A Novel Multi-task Learning Method for Recommender System

arXiv.org Artificial Intelligence

In recent years, thanks to the rapid development of deep learning (DL), DL-based multi-task learning (MTL) has made significant progress, and it has been successfully applied to recommendation systems (RS). However, in a recommender system, the correlations among the involved tasks are complex. Therefore, the existing MTL models designed for RS suffer from negative transfer to different degrees, which will injure optimization in MTL. We find that the root cause of negative transfer is feature redundancy that features learned for different tasks interfere with each other. To alleviate the issue of negative transfer, we propose a novel multi-task learning method termed Feature Decomposition Network (FDN). The key idea of the proposed FDN is reducing the phenomenon of feature redundancy by explicitly decomposing features into task-specific features and task-shared features with carefully designed constraints. We demonstrate the effectiveness of the proposed method on two datasets, a synthetic dataset and a public datasets (i.e., Ali-CCP). Experimental results show that our proposed FDN can outperform the state-of-the-art (SOTA) methods by a noticeable margin.


A Surrogate Objective Framework for Prediction+Optimization with Soft Constraints

arXiv.org Artificial Intelligence

Prediction+optimization is a common real-world paradigm where we have to predict problem parameters before solving the optimization problem. However, the criteria by which the prediction model is trained are often inconsistent with the goal of the downstream optimization problem. Recently, decision-focused prediction approaches, such as SPO+ and direct optimization, have been proposed to fill this gap. However, they cannot directly handle the soft constraints with the $max$ operator required in many real-world objectives. This paper proposes a novel analytically differentiable surrogate objective framework for real-world linear and semi-definite negative quadratic programming problems with soft linear and non-negative hard constraints. This framework gives the theoretical bounds on constraints' multipliers, and derives the closed-form solution with respect to predictive parameters and thus gradients for any variable in the problem. We evaluate our method in three applications extended with soft constraints: synthetic linear programming, portfolio optimization, and resource provisioning, demonstrating that our method outperforms traditional two-staged methods and other decision-focused approaches.


Finding A Small Vertex Cover in Massive Sparse Graphs: Construct, Local Search, and Preprocess

Journal of Artificial Intelligence Research

The problem of finding a minimum vertex cover (MinVC) in a graph is a well known NP-hard combinatorial optimization problem of great importance in theory and practice. Due to its NP-hardness, there has been much interest in developing heuristic algorithms for finding a small vertex cover in reasonable time. Previously, heuristic algorithms for MinVC have focused on solving graphs of relatively small size, and they are not suitable for solving massive graphs as they usually have high-complexity heuristics. This paper explores techniques for solving MinVC in very large scale real-world graphs, including a construction algorithm, a local search algorithm and a preprocessing algorithm. Both the construction and search algorithms are based on low-complexity heuristics, and we combine them to develop a heuristic algorithm for MinVC called FastVC. Experimental results on a broad range of real-world massive graphs show that, our algorithms are very fast and have better performance than previous heuristic algorithms for MinVC. We also develop a preprocessing algorithm to simplify graphs for MinVC algorithms. By applying the preprocessing algorithm to local search algorithms, we obtain two efficient MinVC solvers called NuMVC2+p and FastVC2+p, which show further improvement on the massive graphs.


Double Configuration Checking in Stochastic Local Search for Satisfiability

AAAI Conferences

Stochastic local search (SLS) algorithms have shown effectiveness on satisfiable instances of the Boolean satisfiability (SAT) problem. However, their performance is still unsatisfactory on random k-SAT at the phase transition, which is of significance and is one of the empirically hardest distributions of SAT instances. In this paper, we propose a new heuristic called DCCA, which combines two configuration checking (CC) strategies with different definitions of configuration in a novel way. We use the DCCA heuristic to design an efficient SLS solver for SAT dubbed DCCASat. The experiments show that the DCCASat solver significantly outperforms a number of state-of-the-art solvers on extensive random k-SAT benchmarks at the phase transition. Moreover, DCCASat shows good performance on structured benchmarks, and a combination of DCCASat with a complete solver achieves state-of-the-art performance on structured benchmarks.