Goto

Collaborating Authors

 Lung, David


Learning with Chemical versus Electrical Synapses -- Does it Make a Difference?

arXiv.org Artificial Intelligence

Bio-inspired neural networks have the potential to advance our understanding of neural computation and improve the state-of-the-art of AI systems. Bio-electrical synapses directly transmit neural signals, by enabling fast current flow between neurons. In contrast, bio-chemical synapses transmit neural signals indirectly, through neurotransmitters. Prior work showed that interpretable dynamics for complex robotic control, can be achieved by using chemical synapses, within a sparse, bio-inspired architecture, called Neural Circuit Policies (NCPs). However, a comparison of these two synaptic models, within the same architecture, remains an unexplored area. In this work we aim to determine the impact of using chemical synapses compared to electrical synapses, in both sparse and all-to-all connected networks. We conduct experiments with autonomous lane-keeping through a photorealistic autonomous driving simulator to evaluate their performance under diverse conditions and in the presence of noise. The experiments highlight the substantial influence of the architectural and synaptic-model choices, respectively. Our results show that employing chemical synapses yields noticeable improvements compared to electrical synapses, and that NCPs lead to better results in both synaptic models.


SIM-CE: An Advanced Simulink Platform for Studying the Brain of Caenorhabditis elegans

arXiv.org Machine Learning

We introduce SIM-CE, an advanced, user-friendly modeling and simulation environment in Simulink for performing multi-scale behavioral analysis of the nervous system of Caenorhabditis elegans (C. elegans). SIM-CE contains an implementation of the mathematical models of C. elegans's neurons and synapses, in Simulink, which can be easily extended and particularized by the user. The Simulink model is able to capture both complex dynamics of ion channels and additional biophysical detail such as intracellular calcium concentration. We demonstrate the performance of SIM-CE by carrying out neuronal, synaptic and neural-circuit-level behavioral simulations. Such environment enables the user to capture unknown properties of the neural circuits, test hypotheses and determine the origin of many behavioral plasticities exhibited by the worm.