Goto

Collaborating Authors

 Luis, Samuel Yanes


Optimizing Plastic Waste Collection in Water Bodies Using Heterogeneous Autonomous Surface Vehicles with Deep Reinforcement Learning

arXiv.org Artificial Intelligence

This paper presents a model-free deep reinforcement learning framework for informative path planning with heterogeneous fleets of autonomous surface vehicles to locate and collect plastic waste. The system employs two teams of vehicles: scouts and cleaners. Coordination between these teams is achieved through a deep reinforcement approach, allowing agents to learn strategies to maximize cleaning efficiency. The primary objective is for the scout team to provide an up-to-date contamination model, while the cleaner team collects as much waste as possible following this model. This strategy leads to heterogeneous teams that optimize fleet efficiency through inter-team cooperation supported by a tailored reward function. Different trainings of the proposed algorithm are compared with other state-of-the-art heuristics in two distinct scenarios, one with high convexity and another with narrow corridors and challenging access. According to the obtained results, it is demonstrated that deep reinforcement learning based algorithms outperform other benchmark heuristics, exhibiting superior adaptability. In addition, training with greedy actions further enhances performance, particularly in scenarios with intricate layouts.


Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring

arXiv.org Artificial Intelligence

The use of Autonomous Surface Vehicles, equipped with water quality sensors and artificial vision systems, allows for a smart and adaptive deployment in water resources environmental monitoring. This paper presents a real implementation of a vehicle prototype that to address the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring. The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth. Furthermore, by means of a stereo-camera, it also can detect and locate macro-plastics in real environments by means of deep visual models, such as YOLOv5. In this paper, experimental results, carried out in Lago Mayor (Sevilla), has been presented as proof of the capabilities of the proposed architecture. The overall system, and the early results obtained, are expected to provide a solid example of a real platform useful for the water resource monitoring task, and to serve as a real case scenario for deploying Artificial Intelligence algorithms, such as path planning, artificial vision, etc.


Deep Reinforcement Multi-agent Learning framework for Information Gathering with Local Gaussian Processes for Water Monitoring

arXiv.org Artificial Intelligence

The conservation of hydrological resources involves continuously monitoring their contamination. A multi-agent system composed of autonomous surface vehicles is proposed in this paper to efficiently monitor the water quality. To achieve a safe control of the fleet, the fleet policy should be able to act based on measurements and to the the fleet state. It is proposed to use Local Gaussian Processes and Deep Reinforcement Learning to jointly obtain effective monitoring policies. Local Gaussian processes, unlike classical global Gaussian processes, can accurately model the information in a dissimilar spatial correlation which captures more accurately the water quality information. A Deep convolutional policy is proposed, that bases the decisions on the observation on the mean and variance of this model, by means of an information gain reward. Using a Double Deep Q-Learning algorithm, agents are trained to minimize the estimation error in a safe manner thanks to a Consensus-based heuristic. Simulation results indicate an improvement of up to 24% in terms of the mean absolute error with the proposed models. Also, training results with 1-3 agents indicate that our proposed approach returns 20% and 24% smaller average estimation errors for, respectively, monitoring water quality variables and monitoring algae blooms, as compared to state-of-the-art approaches