Goto

Collaborating Authors

 Luger, George


A Survey of Current Practice and Teaching of AI

AAAI Conferences

The field of AI has changed significantly in the past couple of years and will likely continue to do so. Driven by a desire to expose our students to relevant and modern materials, we conducted two surveys, one of AI instructors and one of AI practitioners. The surveys were aimed at gathering infor-mation about the current state of the art of introducing AI as well as gathering input from practitioners in the field on techniques used in practice. In this paper, we present and briefly discuss the responses to those two surveys.


Toward General Analysis of Recursive Probability Models

arXiv.org Artificial Intelligence

There is increasing interest within the research community in the design and use of recursive probability models. Although there still remains concern about computational complexity costs and the fact that computing exact solutions can be intractable for many nonrecursive models and impossible in the general case for recursive problems, several research groups are actively developing computational techniques for recursive stochastic languages. We have developed an extension to the traditional lambda-calculus as a framework for families of Turing complete stochastic languages. We have also developed a class of exact inference algorithms based on the traditional reductions of the lambda-calculus. We further propose that using the deBruijn notation (a lambda-calculus notation with nameless dummies) supports effective caching in such systems (caching being an essential component of efficient computation). Finally, our extension to the lambda-calculus offers a foundation and general theory for the construction of recursive stochastic modeling languages as well as promise for effective caching and efficient approximation algorithms for inference.