Goto

Collaborating Authors

 Lucic, Ana


Clifford-Steerable Convolutional Neural Networks

arXiv.org Artificial Intelligence

We present Clifford-Steerable Convolutional Neural Networks (CS-CNNs), a novel class of $\mathrm{E}(p, q)$-equivariant CNNs. CS-CNNs process multivector fields on pseudo-Euclidean spaces $\mathbb{R}^{p,q}$. They cover, for instance, $\mathrm{E}(3)$-equivariance on $\mathbb{R}^3$ and Poincar\'e-equivariance on Minkowski spacetime $\mathbb{R}^{1,3}$. Our approach is based on an implicit parametrization of $\mathrm{O}(p,q)$-steerable kernels via Clifford group equivariant neural networks. We significantly and consistently outperform baseline methods on fluid dynamics as well as relativistic electrodynamics forecasting tasks.


Aurora: A Foundation Model of the Atmosphere

arXiv.org Artificial Intelligence

Deep learning foundation models are revolutionizing many facets of science by leveraging vast amounts of data to learn general-purpose representations that can be adapted to tackle diverse downstream tasks. Foundation models hold the promise to also transform our ability to model our planet and its subsystems by exploiting the vast expanse of Earth system data. Here we introduce Aurora, a large-scale foundation model of the atmosphere trained on over a million hours of diverse weather and climate data. Aurora leverages the strengths of the foundation modelling approach to produce operational forecasts for a wide variety of atmospheric prediction problems, including those with limited training data, heterogeneous variables, and extreme events. In under a minute, Aurora produces 5-day global air pollution predictions and 10-day high-resolution weather forecasts that outperform state-of-the-art classical simulation tools and the best specialized deep learning models. Taken together, these results indicate that foundation models can transform environmental forecasting.


Semi-Supervised Object Detection in the Open World

arXiv.org Artificial Intelligence

Existing approaches for semi-supervised object detection assume a fixed set of classes present in training and unlabeled datasets, i.e., in-distribution (ID) data. The performance of these techniques significantly degrades when these techniques are deployed in the open-world, due to the fact that the unlabeled and test data may contain objects that were not seen during training, i.e., out-of-distribution (OOD) data. The two key questions that we explore in this paper are: can we detect these OOD samples and if so, can we learn from them? With these considerations in mind, we propose the Open World Semi-supervised Detection framework (OWSSD) that effectively detects OOD data along with a semi-supervised learning pipeline that learns from both ID and OOD data. We introduce an ensemble based OOD detector consisting of lightweight auto-encoder networks trained only on ID data. Through extensive evalulation, we demonstrate that our method performs competitively against state-of-the-art OOD detection algorithms and also significantly boosts the semi-supervised learning performance in open-world scenarios.


Reproducibility as a Mechanism for Teaching Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence

arXiv.org Artificial Intelligence

In this work, we explain the setup for a technical, graduate-level course on Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence (FACT-AI) at the University of Amsterdam, which teaches FACT-AI concepts through the lens of reproducibility. The focal point of the course is a group project based on reproducing existing FACT-AI algorithms from top AI conferences and writing a corresponding report. In the first iteration of the course, we created an open source repository with the code implementations from the group projects. In the second iteration, we encouraged students to submit their group projects to the Machine Learning Reproducibility Challenge, resulting in 9 reports from our course being accepted for publication in the ReScience journal. We reflect on our experience teaching the course over two years, where one year coincided with a global pandemic, and propose guidelines for teaching FACT-AI through reproducibility in graduate-level AI study programs. We hope this can be a useful resource for instructors who want to set up similar courses in the future.


To Trust or Not to Trust a Regressor: Estimating and Explaining Trustworthiness of Regression Predictions

arXiv.org Artificial Intelligence

In hybrid human-AI systems, users need to decide whether or not to trust an algorithmic prediction while the true error in the prediction is unknown. To accommodate such settings, we introduce RETRO-VIZ, a method for (i) estimating and (ii) explaining trustworthiness of regression predictions. It consists of RETRO, a quantitative estimate of the trustworthiness of a prediction, and VIZ, a visual explanation that helps users identify the reasons for the (lack of) trustworthiness of a prediction. We find that RETRO-scores negatively correlate with prediction error across 117 experimental settings, indicating that RETRO provides a useful measure to distinguish trustworthy predictions from untrustworthy ones. In a user study with 41 participants, we find that VIZ-explanations help users identify whether a prediction is trustworthy or not: on average, 95.1% of participants correctly select the more trustworthy prediction, given a pair of predictions. In addition, an average of 75.6% of participants can accurately describe why a prediction seems to be (not) trustworthy. Finally, we find that the vast majority of users subjectively experience RETRO-VIZ as a useful tool to assess the trustworthiness of algorithmic predictions.


CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) have shown increasing promise in real-world applications, which has caused an increased interest in understanding their predictions. However, existing methods for explaining predictions from GNNs do not provide an opportunity for recourse: given a prediction for a particular instance, we want to understand how the prediction can be changed. We propose CF-GNNExplainer: the first method for generating counterfactual explanations for GNNs, i.e., the minimal perturbations to the input graph data such that the prediction changes. Using only edge deletions, we find that we are able to generate counterfactual examples for the majority of instances across three widely used datasets for GNN explanations, while removing less than 3 edges on average, with at least 94% accuracy. This indicates that CF-GNNExplainer primarily removes edges that are crucial for the original predictions, resulting in minimal counterfactual examples.


Contrastive Explanations for Large Errors in Retail Forecasting Predictions through Monte Carlo Simulations

arXiv.org Artificial Intelligence

At Ahold Delhaize, there is an interest in using more complex machine learning techniques for sales forecasting. It is difficult to convince analysts, along with their superiors, to adopt these techniques since the models are considered to be 'black boxes,' even if they perform better than current models in use. We aim to explore the impact of contrastive explanations about large errors on users' attitudes towards a 'black-box' model. In this work, we make two contributions. The first is an algorithm, Monte Carlo Bounds for Reasonable Predictions (MC-BRP). Given a large error, MC-BRP determines (1) feature values that would result in a reasonable prediction, and (2) general trends between each feature and the target, based on Monte Carlo simulations. The second contribution is the evaluation of MC-BRP along with its outcomes, which has both objective and subjective components. We evaluate on a real dataset with real users from Ahold Delhaize by conducting a user study to determine if explanations generated by MC-BRP help users understand why a prediction results in a large error, and if this promotes trust in an automatically-learned model. The study shows that users are able to answer objective questions about the model's predictions with overall 81.7% accuracy when provided with these contrastive explanations. We also show that users who saw MC-BRP explanations understand why the model makes large errors in predictions significantly more than users in the control group.


Explaining Predictions from Tree-based Boosting Ensembles

arXiv.org Artificial Intelligence

Understanding how "black-box" models arrive at their predictions has sparked significant interest from both within and outside the AI community. Our work focuses on doing this by generating local explanations about individual predictions for tree-based ensembles, specifically Gradient Boosting Decision Trees (GBDTs). Given a correctly predicted instance in the training set, we wish to generate a counterfactual explanation for this instance, that is, the minimal perturbation of this instance such that the prediction flips to the opposite class. Most existing methods for counterfactual explanations are (1) model-agnostic, so they do not take into account the structure of the original model, and/or (2) involve building a surrogate model on top of the original model, which is not guaranteed to represent the original model accurately. There exists a method specifically for random forests; we wish to extend this method for GBDTs. This involves accounting for (1) the sequential dependency between trees and (2) training on the negative gradients instead of the original labels.