Luccioni, Alexandra
Geo-Spatiotemporal Features and Shape-Based Prior Knowledge for Fine-grained Imbalanced Data Classification
Kantor, Charles A., Skreta, Marta, Rauby, Brice, Boussioux, Léonard, Jehanno, Emmanuel, Luccioni, Alexandra, Rolnick, David, Talbot, Hugues
Fine-grained classification aims at distinguishing between items with similar global perception and patterns, but that differ by minute details. Our primary challenges come from both small inter-class variations and large intra-class variations. In this article, we propose to combine several innovations to improve fine-grained classification within the use-case of wildlife, which is of practical interest for experts. We utilize geo-spatiotemporal data to enrich the picture information and further improve the performance. We also investigate state-of-the-art methods for handling the imbalanced data issue.
Considerations, Good Practices, Risks and Pitfalls in Developing AI Solutions Against COVID-19
Luccioni, Alexandra, Bullock, Joseph, Pham, Katherine Hoffmann, Lam, Cynthia Sin Nga, Luengo-Oroz, Miguel
The COVID-19 pandemic has been a major challenge to humanity, with 12.7 million confirmed cases as of July 13th, 2020 [1]. In previous work, we described how Artificial Intelligence can be used to tackle the pandemic with applications at the molecular, clinical, and societal scales [2]. In the present follow-up article, we review these three research directions, and assess the level of maturity and feasibility of the approaches used, as well as their potential for operationalization. We also summarize some commonly encountered risks and practical pitfalls, as well as guidelines and best practices for formulating and deploying AI applications at different scales.
Establishing an Evaluation Metric to Quantify Climate Change Image Realism
Zhou, Sharon, Luccioni, Alexandra, Cosne, Gautier, Bernstein, Michael S., Bengio, Yoshua
With success on controlled tasks, generative models are being increasingly applied to humanitarian applications [1,2]. In this paper, we focus on the evaluation of a conditional generative model that illustrates the consequences of climate change-induced flooding to encourage public interest and awareness on the issue. Because metrics for comparing the realism of different modes in a conditional generative model do not exist, we propose several automated and human-based methods for evaluation. To do this, we adapt several existing metrics, and assess the automated metrics against gold standard human evaluation. We find that using Fr\'echet Inception Distance (FID) with embeddings from an intermediary Inception-V3 layer that precedes the auxiliary classifier produces results most correlated with human realism. While insufficient alone to establish a human-correlated automatic evaluation metric, we believe this work begins to bridge the gap between human and automated generative evaluation procedures.
Tackling Climate Change with Machine Learning
Rolnick, David, Donti, Priya L., Kaack, Lynn H., Kochanski, Kelly, Lacoste, Alexandre, Sankaran, Kris, Ross, Andrew Slavin, Milojevic-Dupont, Nikola, Jaques, Natasha, Waldman-Brown, Anna, Luccioni, Alexandra, Maharaj, Tegan, Sherwin, Evan D., Mukkavilli, S. Karthik, Kording, Konrad P., Gomes, Carla, Ng, Andrew Y., Hassabis, Demis, Platt, John C., Creutzig, Felix, Chayes, Jennifer, Bengio, Yoshua
Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks
Schmidt, Victor, Luccioni, Alexandra, Mukkavilli, S. Karthik, Balasooriya, Narmada, Sankaran, Kris, Chayes, Jennifer, Bengio, Yoshua
We present a project that aims to generate images that depict accurate, vivid, and personalized outcomes of climate change using Cycle-Consistent Adversarial Networks (CycleGANs). By training our CycleGAN model on street-view images of houses before and after extreme weather events (e.g. floods, forest fires, etc.), we learn a mapping that can then be applied to images of locations that have not yet experienced these events. This visual transformation is paired with climate model predictions to assess likelihood and type of climate-related events in the long term (50 years) in order to bring the future closer in the viewers mind. The eventual goal of our project is to enable individuals to make more informed choices about their climate future by creating a more visceral understanding of the effects of climate change, while maintaining scientific credibility by drawing on climate model projections.