Lubos, Sebastian
Recommender Systems for Sustainability: Overview and Research Issues
Felfernig, Alexander, Wundara, Manfred, Tran, Thi Ngoc Trang, Polat-Erdeniz, Seda, Lubos, Sebastian, El-Mansi, Merfat, Garber, Damian, Le, Viet-Man
Sustainability development goals (SDGs) are regarded as a universal call to action with the overall objectives of planet protection, ending of poverty, and ensuring peace and prosperity for all people. In order to achieve these objectives, different AI technologies play a major role. Specifically, recommender systems can provide support for organizations and individuals to achieve the defined goals. Recommender systems integrate AI technologies such as machine learning, explainable AI (XAI), case-based reasoning, and constraint solving in order to find and explain user-relevant alternatives from a potentially large set of options. In this article, we summarize the state of the art in applying recommender systems to support the achievement of sustainability development goals. In this context, we discuss open issues for future research.
Sports Recommender Systems: Overview and Research Issues
Felfernig, Alexander, Wundara, Manfred, Tran, Thi Ngoc Trang, Le, Viet-Man, Lubos, Sebastian, Polat-Erdeniz, Seda
Sports recommender systems receive an increasing attention due to their potential of fostering healthy living, improving personal well-being, and increasing performances in sport. These systems support people in sports, for example, by the recommendation of healthy and performance boosting food items, the recommendation of training practices, talent and team recommendation, and the recommendation of specific tactics in competitions. With applications in the virtual world, for example, the recommendation of maps or opponents in e-sports, these systems already transcend conventional sports scenarios where physical presence is needed. On the basis of different working examples, we present an overview of sports recommender systems applications and techniques. Overall, we analyze the related state-of-the-art and discuss open research issues.
Solving Multi-Configuration Problems: A Performance Analysis with Choco Solver
Ritz, Benjamin, Felfernig, Alexander, Le, Viet-Man, Lubos, Sebastian
In many scenarios, configurators support the configuration of a solution that satisfies the preferences of a single user. The concept of \emph{multi-configuration} is based on the idea of configuring a set of configurations. Such a functionality is relevant in scenarios such as the configuration of personalized exams, the configuration of project teams, and the configuration of different trips for individual members of a tourist group (e.g., when visiting a specific city). In this paper, we exemplify the application of multi-configuration for generating individualized exams. We also provide a constraint solver performance analysis which helps to gain some insights into corresponding performance issues.
Conjunctive Query Based Constraint Solving For Feature Model Configuration
Felfernig, Alexander, Le, Viet-Man, Lubos, Sebastian
Feature model configuration can be supported on the basis of various types of reasoning approaches. Examples thereof are SAT solving, constraint solving, and answer set programming (ASP). Using these approaches requires technical expertise of how to define and solve the underlying configuration problem. In this paper, we show how to apply conjunctive queries typically supported by today's relational database systems to solve constraint satisfaction problems (CSP) and -- more specifically -- feature model configuration tasks. This approach allows the application of a wide-spread database technology to solve configuration tasks and also allows for new algorithmic approaches when it comes to the identification and resolution of inconsistencies.