Goto

Collaborating Authors

 Lu, Zitong


ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery

arXiv.org Artificial Intelligence

The advancements of language language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about their true capabilities. In this work, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using our benchmark, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands CodeAct, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. In addition, we evaluate OpenAI o1 with direct prompting and self-debug, which demonstrates the effectiveness of increasing inference-time compute. Still, our results underscore the limitations of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.


Teaching CORnet Human fMRI Representations for Enhanced Model-Brain Alignment

arXiv.org Artificial Intelligence

Deep convolutional neural networks (DCNNs) have demonstrated excellent performance in object recognition and have been found to share some similarities with brain visual processing. However, the substantial gap between DCNNs and human visual perception still exists. Functional magnetic resonance imaging (fMRI) as a widely used technique in cognitive neuroscience can record neural activation in the human visual cortex during the process of visual perception. Can we teach DCNNs human fMRI signals to achieve a more brain-like model? To answer this question, this study proposed ReAlnet-fMRI, a model based on the SOTA vision model CORnet but optimized using human fMRI data through a multi-layer encoding-based alignment framework. This framework has been shown to effectively enable the model to learn human brain representations. The fMRI-optimized ReAlnet-fMRI exhibited higher similarity to the human brain than both CORnet and the control model in within-and across-subject as well as within- and across-modality model-brain (fMRI and EEG) alignment evaluations. Additionally, we conducted an in-depth analyses to investigate how the internal representations of ReAlnet-fMRI differ from CORnet in encoding various object dimensions. These findings provide the possibility of enhancing the brain-likeness of visual models by integrating human neural data, helping to bridge the gap between computer vision and visual neuroscience.


ReAlnet: Achieving More Human Brain-Like Vision via Human Neural Representational Alignment

arXiv.org Artificial Intelligence

Despite the remarkable strides made in artificial intelligence, current object recognition models still lag behind in emulating the mechanism of visual information processing in human brains. Recent studies have highlighted the potential of using neural data to mimic brain processing; however, these often reply on invasive neural recordings from non-human subjects, leaving a critical gap in our understanding of human visual perception and the development of more human brain-like vision models. Addressing this gap, we present, for the first time, "Re(presentational)Al(ignment)net", a vision model aligned with human brain activity based on non-invasive EEG recordings, demonstrating a significantly higher similarity to human brain representations. Our innovative image-to-brain multi-layer encoding alignment framework not only optimizes multiple layers of the model, marking a substantial leap in neural alignment, but also enables the model to efficiently learn and mimic human brain's visual representational patterns across object categories and different neural data modalities. Furthermore, we discover that alignment with human brain representations improves the model's adversarial robustness. Our findings suggest that ReAlnet sets a new precedent in the field, bridging the gap between artificial and human vision, and paving the way for more brain-like artificial intelligence systems.