Plotting

 Lu, Zhiyun


Talking Turns: Benchmarking Audio Foundation Models on Turn-Taking Dynamics

arXiv.org Artificial Intelligence

The recent wave of audio foundation models (FMs) could provide new capabilities for conversational modeling. However, there have been limited efforts to evaluate these audio FMs comprehensively on their ability to have natural and interactive conversations. To engage in meaningful conversation with the end user, we would want the FMs to additionally perform a fluent succession of turns without too much overlapping speech or long stretches of silence. Inspired by this, we ask whether the recently proposed audio FMs can understand, predict, and perform turn-taking events? To answer this, we propose a novel evaluation protocol that can assess spoken dialog system's turn-taking capabilities using a supervised model as a judge that has been trained to predict turn-taking events in human-human conversations. Using this protocol, we present the first comprehensive user study that evaluates existing spoken dialogue systems on their ability to perform turn-taking events and reveal many interesting insights, such as they sometimes do not understand when to speak up, can interrupt too aggressively and rarely backchannel. We further evaluate multiple open-source and proprietary audio FMs accessible through APIs on carefully curated test benchmarks from Switchboard to measure their ability to understand and predict turn-taking events and identify significant room for improvement. We will open source our evaluation platform to promote the development of advanced conversational AI systems.


TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights

arXiv.org Artificial Intelligence

Direct Preference Optimization (DPO) has been widely adopted for preference alignment of Large Language Models (LLMs) due to its simplicity and effectiveness. However, DPO is derived as a bandit problem in which the whole response is treated as a single arm, ignoring the importance differences between tokens, which may affect optimization efficiency and make it difficult to achieve optimal results. In this work, we propose that the optimal data for DPO has equal expected rewards for each token in winning and losing responses, as there is no difference in token importance. However, since the optimal dataset is unavailable in practice, we propose using the original dataset for importance sampling to achieve unbiased optimization. Accordingly, we propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward. Inspired by previous works, we estimate the token importance weights using the difference in prediction probabilities from a pair of contrastive LLMs. We explore three methods to construct these contrastive LLMs: (1) guiding the original LLM with contrastive prompts, (2) training two separate LLMs using winning and losing responses, and (3) performing forward and reverse DPO training with winning and losing responses. Experiments show that TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks. We also visualize the estimated weights, demonstrating their ability to identify key token positions.


Instruction-Following Speech Recognition

arXiv.org Artificial Intelligence

Conventional end-to-end Automatic Speech Recognition (ASR) models primarily focus on exact transcription tasks, lacking flexibility for nuanced user interactions. With the advent of Large Language Models (LLMs) in speech processing, more organic, text-prompt-based interactions have become possible. However, the mechanisms behind these models' speech understanding and "reasoning" capabilities remain underexplored. To study this question from the data perspective, we introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions. This enables a multitude of speech recognition tasks -- ranging from transcript manipulation to summarization -- without relying on predefined command sets. Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring LLMs or pre-trained speech modules. It also offers selective transcription options based on instructions like "transcribe first half and then turn off listening," providing an additional layer of privacy and safety compared to existing LLMs. Our findings highlight the significant potential of instruction-following training to advance speech foundation models.


Less is More: Removing Text-regions Improves CLIP Training Efficiency and Robustness

arXiv.org Artificial Intelligence

The CLIP (Contrastive Language-Image Pre-training) model and its variants are becoming the de facto backbone in many applications. However, training a CLIP model from hundreds of millions of image-text pairs can be prohibitively expensive. Furthermore, the conventional CLIP model doesn't differentiate between the visual semantics and meaning of text regions embedded in images. This can lead to non-robustness when the text in the embedded region doesn't match the image's visual appearance. In this paper, we discuss two effective approaches to improve the efficiency and robustness of CLIP training: (1) augmenting the training dataset while maintaining the same number of optimization steps, and (2) filtering out samples that contain text regions in the image. By doing so, we significantly improve the classification and retrieval accuracy on public benchmarks like ImageNet and CoCo. Filtering out images with text regions also protects the model from typographic attacks. To verify this, we build a new dataset named ImageNet with Adversarial Text Regions (ImageNet-Attr). Our filter-based CLIP model demonstrates a top-1 accuracy of 68.78\%, outperforming previous models whose accuracy was all below 50\%.


Improving the fusion of acoustic and text representations in RNN-T

arXiv.org Artificial Intelligence

The recurrent neural network transducer (RNN-T) has recently become the mainstream end-to-end approach for streaming automatic speech recognition (ASR). To estimate the output distributions over subword units, RNN-T uses a fully connected layer as the joint network to fuse the acoustic representations extracted using the acoustic encoder with the text representations obtained using the prediction network based on the previous subword units. In this paper, we propose to use gating, bilinear pooling, and a combination of them in the joint network to produce more expressive representations to feed into the output layer. A regularisation method is also proposed to enable better acoustic encoder training by reducing the gradients back-propagated into the prediction network at the beginning of RNN-T training. Experimental results on a multilingual ASR setting for voice search over nine languages show that the joint use of the proposed methods can result in 4%--5% relative word error rate reductions with only a few million extra parameters.


Uncertainty Estimation with Infinitesimal Jackknife, Its Distribution and Mean-Field Approximation

arXiv.org Machine Learning

Uncertainty quantification is an important research area in machine learning. Many approaches have been developed to improve the representation of uncertainty in deep models to avoid overconfident predictions. Existing ones such as Bayesian neural networks and ensemble methods require modifications to the training procedures and are computationally costly for both training and inference. Motivated by this, we propose mean-field infinitesimal jackknife (mfIJ) -- a simple, efficient, and general-purpose plug-in estimator for uncertainty estimation. The main idea is to use infinitesimal jackknife, a classical tool from statistics for uncertainty estimation to construct a pseudo-ensemble that can be described with a closed-form Gaussian distribution, without retraining. We then use this Gaussian distribution for uncertainty estimation. While the standard way is to sample models from this distribution and combine each sample's prediction, we develop a mean-field approximation to the inference where Gaussian random variables need to be integrated with the softmax nonlinear functions to generate probabilities for multinomial variables. The approach has many appealing properties: it functions as an ensemble without requiring multiple models, and it enables closed-form approximate inference using only the first and second moments of Gaussians. Empirically, mfIJ performs competitively when compared to state-of-the-art methods, including deep ensembles, temperature scaling, dropout and Bayesian NNs, on important uncertainty tasks. It especially outperforms many methods on out-of-distribution detection.


Hyper-parameter Tuning under a Budget Constraint

arXiv.org Machine Learning

Hyper-parameter tuning is of crucial importance to designing and deploying machine learning systems. Broadly, hyper-parameters include the architecture of the learning models, regularization parameters, optimization methods and their parameters, and other "knobs" to be tuned. It is challenging to explore the vast space of hyper-parameters efficiently to identify the optimal configuration. Quite a few approaches have been proposed and investigated: random search, Bayesian Optimization (BO) [30, 29], bandits-based Hyperband [17, 24], and meta-learning [5, 1, 10]. Many of those prior studies have focused on the aspect of reducing as much as possible the computation cost to obtain the optimal configuration. In this work, we look at a different but important perspective to hyper-parameter optimization - under a fixed time/computation cost, how we can improve the performance as much as possible.


Kernel Approximation Methods for Speech Recognition

arXiv.org Machine Learning

We study large-scale kernel methods for acoustic modeling in speech recognition and compare their performance to deep neural networks (DNNs). We perform experiments on four speech recognition datasets, including the TIMIT and Broadcast News benchmark tasks, and compare these two types of models on frame-level performance metrics (accuracy, cross-entropy), as well as on recognition metrics (word/character error rate). In order to scale kernel methods to these large datasets, we use the random Fourier feature method of Rahimi and Recht (2007). We propose two novel techniques for improving the performance of kernel acoustic models. First, in order to reduce the number of random features required by kernel models, we propose a simple but effective method for feature selection. The method is able to explore a large number of non-linear features while maintaining a compact model more efficiently than existing approaches. Second, we present a number of frame-level metrics which correlate very strongly with recognition performance when computed on the heldout set; we take advantage of these correlations by monitoring these metrics during training in order to decide when to stop learning. This technique can noticeably improve the recognition performance of both DNN and kernel models, while narrowing the gap between them. Additionally, we show that the linear bottleneck method of Sainath et al. (2013) improves the performance of our kernel models significantly, in addition to speeding up training and making the models more compact. Together, these three methods dramatically improve the performance of kernel acoustic models, making their performance comparable to DNNs on the tasks we explored.


A Comparison between Deep Neural Nets and Kernel Acoustic Models for Speech Recognition

arXiv.org Machine Learning

We study large-scale kernel methods for acoustic modeling and compare to DNNs on performance metrics related to both acoustic modeling and recognition. Measuring perplexity and frame-level classification accuracy, kernel-based acoustic models are as effective as their DNN counterparts. However, on token-error-rates DNN models can be significantly better. We have discovered that this might be attributed to DNN's unique strength in reducing both the perplexity and the entropy of the predicted posterior probabilities. Motivated by our findings, we propose a new technique, entropy regularized perplexity, for model selection. This technique can noticeably improve the recognition performance of both types of models, and reduces the gap between them. While effective on Broadcast News, this technique could be also applicable to other tasks.


How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets

arXiv.org Machine Learning

The computational complexity of kernel methods has often been a major barrier for applying them to large-scale learning problems. We argue that this barrier can be effectively overcome. In particular, we develop methods to scale up kernel models to successfully tackle large-scale learning problems that are so far only approachable by deep learning architectures. Based on the seminal work by Rahimi and Recht on approximating kernel functions with features derived from random projections, we advance the state-of-the-art by proposing methods that can efficiently train models with hundreds of millions of parameters, and learn optimal representations from multiple kernels. We conduct extensive empirical studies on problems from image recognition and automatic speech recognition, and show that the performance of our kernel models matches that of well-engineered deep neural nets (DNNs). To the best of our knowledge, this is the first time that a direct comparison between these two methods on large-scale problems is reported. Our kernel methods have several appealing properties: training with convex optimization, cost for training a single model comparable to DNNs, and significantly reduced total cost due to fewer hyperparameters to tune for model selection. Our contrastive study between these two very different but equally competitive models sheds light on fundamental questions such as how to learn good representations.