Goto

Collaborating Authors

 Lu, Zhicong


How Users Who are Blind or Low Vision Play Mobile Games: Perceptions, Challenges, and Strategies

arXiv.org Artificial Intelligence

As blind and low-vision (BLV) players engage more deeply with games, accessibility features have become essential. While some research has explored tools and strategies to enhance game accessibility, the specific experiences of these players with mobile games remain underexamined. This study addresses this gap by investigating how BLV users experience mobile games with varying accessibility levels. Through interviews with 32 experienced BLV mobile players, we explore their perceptions, challenges, and strategies for engaging with mobile games. Our findings reveal that BLV players turn to mobile games to alleviate boredom, achieve a sense of accomplishment, and build social connections, but face barriers depending on the game's accessibility level. We also compare mobile games to other forms of gaming, highlighting the relative advantages of mobile games, such as the inherent accessibility of smartphones. This study contributes to understanding BLV mobile gaming experiences and provides insights for enhancing accessible mobile game design.


Minion: A Technology Probe for Resolving Value Conflicts through Expert-Driven and User-Driven Strategies in AI Companion Applications

arXiv.org Artificial Intelligence

AI companions based on large language models can role-play and converse very naturally. When value conflicts arise between the AI companion and the user, it may offend or upset the user. Yet, little research has examined such conflicts. We first conducted a formative study that analyzed 151 user complaints about conflicts with AI companions, providing design implications for our study. Based on these, we created Minion, a technology probe to help users resolve human-AI value conflicts. Minion applies a user-empowerment intervention method that provides suggestions by combining expert-driven and user-driven conflict resolution strategies. We conducted a technology probe study, creating 40 value conflict scenarios on Character.AI and Talkie. 22 participants completed 274 tasks and successfully resolved conflicts 94.16% of the time. We summarize user responses, preferences, and needs in resolving value conflicts, and propose design implications to reduce conflicts and empower users to resolve them more effectively.


Metamorpheus: Interactive, Affective, and Creative Dream Narration Through Metaphorical Visual Storytelling

arXiv.org Artificial Intelligence

Human emotions are essentially molded by lived experiences, from which we construct personalised meaning. The engagement in such meaning-making process has been practiced as an intervention in various psychotherapies to promote wellness. Nevertheless, to support recollecting and recounting lived experiences in everyday life remains under explored in HCI. It also remains unknown how technologies such as generative AI models can facilitate the meaning making process, and ultimately support affective mindfulness. In this paper we present Metamorpheus, an affective interface that engages users in a creative visual storytelling of emotional experiences during dreams. Metamorpheus arranges the storyline based on a dream's emotional arc, and provokes self-reflection through the creation of metaphorical images and text depictions. The system provides metaphor suggestions, and generates visual metaphors and text depictions using generative AI models, while users can apply generations to recolour and re-arrange the interface to be visually affective. Our experience-centred evaluation manifests that, by interacting with Metamorpheus, users can recall their dreams in vivid detail, through which they relive and reflect upon their experiences in a meaningful way.


"It Felt Like Having a Second Mind": Investigating Human-AI Co-creativity in Prewriting with Large Language Models

arXiv.org Artificial Intelligence

Prewriting is the process of discovering and developing ideas before a first draft, which requires divergent thinking and often implies unstructured strategies such as diagramming, outlining, free-writing, etc. Although large language models (LLMs) have been demonstrated to be useful for a variety of tasks including creative writing, little is known about how users would collaborate with LLMs to support prewriting. The preferred collaborative role and initiative of LLMs during such a creativity process is also unclear. To investigate human-LLM collaboration patterns and dynamics during prewriting, we conducted a three-session qualitative study with 15 participants in two creative tasks: story writing and slogan writing. The findings indicated that during collaborative prewriting, there appears to be a three-stage iterative Human-AI Co-creativity process that includes Ideation, Illumination, and Implementation stages. This collaborative process champions the human in a dominant role, in addition to mixed and shifting levels of initiative that exist between humans and LLMs. This research also reports on collaboration breakdowns that occur during this process, user perceptions of using existing LLMs during Human-AI Co-creativity, and discusses design implications to support this co-creativity process.


Tag2Vec: Learning Tag Representations in Tag Networks

arXiv.org Machine Learning

Network embedding is a method to learn low-dimensional representation vectors for nodes in complex networks. In real networks, nodes may have multiple tags but existing methods ignore the abundant semantic and hierarchical information of tags. This information is useful to many network applications and usually very stable. In this paper, we propose a tag representation learning model, Tag2Vec, which mixes nodes and tags into a hybrid network. Firstly, for tag networks, we define semantic distance as the proximity between tags and design a novel strategy, parameterized random walk, to generate context with semantic and hierarchical information of tags adaptively. Then, we propose hyperbolic Skip-gram model to express the complex hierarchical structure better with lower output dimensions. We evaluate our model on the NBER U.S. patent dataset and WordNet dataset. The results show that our model can learn tag representations with rich semantic information and it outperforms other baselines.