Goto

Collaborating Authors

 Lu, Xiaocheng


DiPrompT: Disentangled Prompt Tuning for Multiple Latent Domain Generalization in Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) has emerged as a powerful paradigm for learning from decentralized data, and federated domain generalization further considers the test dataset (target domain) is absent from the decentralized training data (source domains). However, most existing FL methods assume that domain labels are provided during training, and their evaluation imposes explicit constraints on the number of domains, which must strictly match the number of clients. Because of the underutilization of numerous edge devices and additional cross-client domain annotations in the real world, such restrictions may be impractical and involve potential privacy leaks. In this paper, we propose an efficient and novel approach, called Disentangled Prompt Tuning (DiPrompT), a method that tackles the above restrictions by learning adaptive prompts for domain generalization in a distributed manner. Specifically, we first design two types of prompts, i.e., global prompt to capture general knowledge across all clients and domain prompts to capture domain-specific knowledge. They eliminate the restriction on the one-to-one mapping between source domains and local clients. Furthermore, a dynamic query metric is introduced to automatically search the suitable domain label for each sample, which includes two-substep text-image alignments based on prompt tuning without labor-intensive annotation. Extensive experiments on multiple datasets demonstrate that our DiPrompT achieves superior domain generalization performance over state-of-the-art FL methods when domain labels are not provided, and even outperforms many centralized learning methods using domain labels.


GBE-MLZSL: A Group Bi-Enhancement Framework for Multi-Label Zero-Shot Learning

arXiv.org Artificial Intelligence

This paper investigates a challenging problem of zero-shot learning in the multi-label scenario (MLZSL), wherein, the model is trained to recognize multiple unseen classes within a sample (e.g., an image) based on seen classes and auxiliary knowledge, e.g., semantic information. Existing methods usually resort to analyzing the relationship of various seen classes residing in a sample from the dimension of spatial or semantic characteristics, and transfer the learned model to unseen ones. But they ignore the effective integration of local and global features. That is, in the process of inferring unseen classes, global features represent the principal direction of the image in the feature space, while local features should maintain uniqueness within a certain range. This integrated neglect will make the model lose its grasp of the main components of the image. Relying only on the local existence of seen classes during the inference stage introduces unavoidable bias. In this paper, we propose a novel and effective group bi-enhancement framework for MLZSL, dubbed GBE-MLZSL, to fully make use of such properties and enable a more accurate and robust visual-semantic projection. Specifically, we split the feature maps into several feature groups, of which each feature group can be trained independently with the Local Information Distinguishing Module (LID) to ensure uniqueness. Meanwhile, a Global Enhancement Module (GEM) is designed to preserve the principal direction. Besides, a static graph structure is designed to construct the correlation of local features. Experiments on large-scale MLZSL benchmark datasets NUS-WIDE and Open-Images-v4 demonstrate that the proposed GBE-MLZSL outperforms other state-of-the-art methods with large margins.


DRPT: Disentangled and Recurrent Prompt Tuning for Compositional Zero-Shot Learning

arXiv.org Artificial Intelligence

Compositional Zero-shot Learning (CZSL) aims to recognize novel concepts composed of known knowledge without training samples. Standard CZSL either identifies visual primitives or enhances unseen composed entities, and as a result, entanglement between state and object primitives cannot be fully utilized. Admittedly, vision-language models (VLMs) could naturally cope with CZSL through tuning prompts, while uneven entanglement leads prompts to be dragged into local optimum. In this paper, we take a further step to introduce a novel Disentangled and Recurrent Prompt Tuning framework termed DRPT to better tap the potential of VLMs in CZSL. Specifically, the state and object primitives are deemed as learnable tokens of vocabulary embedded in prompts and tuned on seen compositions. Instead of jointly tuning state and object, we devise a disentangled and recurrent tuning strategy to suppress the traction force caused by entanglement and gradually optimize the token parameters, leading to a better prompt space. Notably, we develop a progressive fine-tuning procedure that allows for incremental updates to the prompts, optimizing the object first, then the state, and vice versa. Meanwhile, the optimization of state and object is independent, thus clearer features can be learned to further alleviate the issue of entangling misleading optimization. Moreover, we quantify and analyze the entanglement in CZSL and supplement entanglement rebalancing optimization schemes. DRPT surpasses representative state-of-the-art methods on extensive benchmark datasets, demonstrating superiority in both accuracy and efficiency.


Decomposed Soft Prompt Guided Fusion Enhancing for Compositional Zero-Shot Learning

arXiv.org Artificial Intelligence

Compositional Zero-Shot Learning (CZSL) aims to recognize novel concepts formed by known states and objects during training. Existing methods either learn the combined state-object representation, challenging the generalization of unseen compositions, or design two classifiers to identify state and object separately from image features, ignoring the intrinsic relationship between them. To jointly eliminate the above issues and construct a more robust CZSL system, we propose a novel framework termed Decomposed Fusion with Soft Prompt (DFSP)1, by involving vision-language models (VLMs) for unseen composition recognition. Specifically, DFSP constructs a vector combination of learnable soft prompts with state and object to establish the joint representation of them. In addition, a cross-modal decomposed fusion module is designed between the language and image branches, which decomposes state and object among language features instead of image features. Notably, being fused with the decomposed features, the image features can be more expressive for learning the relationship with states and objects, respectively, to improve the response of unseen compositions in the pair space, hence narrowing the domain gap between seen and unseen sets. Experimental results on three challenging benchmarks demonstrate that our approach significantly outperforms other state-of-the-art methods by large margins.