Lu, Xiangyu
DuplexMamba: Enhancing Real-time Speech Conversations with Duplex and Streaming Capabilities
Lu, Xiangyu, Xu, Wang, Wang, Haoyu, Zhou, Hongyun, Zhao, Haiyan, Zhu, Conghui, Zhao, Tiejun, Yang, Muyun
Real-time speech conversation is essential for natural and efficient human-machine interactions, requiring duplex and streaming capabilities. Traditional Transformer-based conversational chatbots operate in a turn-based manner and exhibit quadratic computational complexity that grows as the input size increases. In this paper, we propose DuplexMamba, a Mamba-based end-to-end multimodal duplex model for speech-to-text conversation. DuplexMamba enables simultaneous input processing and output generation, dynamically adjusting to support real-time streaming. Specifically, we develop a Mamba-based speech encoder and adapt it with a Mamba-based language model. Furthermore, we introduce a novel duplex decoding strategy that enables DuplexMamba to process input and generate output simultaneously. Experimental results demonstrate that DuplexMamba successfully implements duplex and streaming capabilities while achieving performance comparable to several recently developed Transformer-based models in automatic speech recognition (ASR) tasks and voice assistant benchmark evaluations.
LoRA-drop: Efficient LoRA Parameter Pruning based on Output Evaluation
Zhou, Hongyun, Lu, Xiangyu, Xu, Wang, Zhu, Conghui, Zhao, Tiejun
Low-Rank Adaptation (LoRA) introduces auxiliary parameters for each layer to fine-tune the pre-trained model under limited computing resources. But it still faces challenges of resource consumption when scaling up to larger models. Previous studies employ pruning techniques by evaluating the importance of LoRA parameters for different layers to address the problem. However, these efforts only analyzed parameter features to evaluate their importance. Indeed, the output of LoRA related to the parameters and data is the factor that directly impacts the frozen model. To this end, we propose LoRA-drop which evaluates the importance of the parameters by analyzing the LoRA output. We retain LoRA for important layers and the LoRA of the other layers share the same parameters. Abundant experiments on NLU and NLG tasks demonstrate the effectiveness of LoRA-drop.