Plotting

 Lu, Haofei


Grasping a Handful: Sequential Multi-Object Dexterous Grasp Generation

arXiv.org Artificial Intelligence

-- We introduce the sequential multi-object robotic grasp sampling algorithm SeqGrasp that can robustly synthesize stable grasps on diverse objects using the robotic hand's partial Degrees of Freedom (DoF). We use SeqGrasp to construct the large-scale Allegro Hand sequential grasping dataset SeqDataset and use it for training the diffusion-based sequential grasp generator SeqDiffuser . We experimentally evaluate SeqGrasp and SeqDiffuser against the state-of-the-art non-sequential multi-object grasp generation method Multi-Grasp in simulation and on a real robot. Furthermore, SeqDiffuser is approximately 1000 times faster at generating grasps than SeqGrasp and MultiGrasp. Generation of dexterous grasps has been studied for a long time, both from a technical perspective on generating grasps on robots [1]-[11] and understanding human grasping [12]- [15]. Most of these methods rely on bringing the robotic hand close to the object and then simultaneously enveloping it with all fingers. While this strategy often results in efficient and successful grasp generation, it simplifies dexterous grasping to resemble parallel-jaw grasping, thereby underutilizing the many DoF of multi-fingered robotic hands [10]. In contrast, grasping multiple objects with a robotic hand, particularly in a sequential manner that mirrors human-like dexterity, as shown in Figure 1, is still an unsolved problem. In this work, we introduce SeqGrasp, a novel hand-agnostic algorithm for generating sequential multi-object grasps.


BodyGen: Advancing Towards Efficient Embodiment Co-Design

arXiv.org Artificial Intelligence

Embodiment co-design aims to optimize a robot's morphology and control policy simultaneously. While prior work has demonstrated its potential for generating environment-adaptive robots, this field still faces persistent challenges in optimization efficiency due to the (i) combinatorial nature of morphological search spaces and (ii) intricate dependencies between morphology and control. We prove that the ineffective morphology representation and unbalanced reward signals between the design and control stages are key obstacles to efficiency. To advance towards efficient embodiment co-design, we propose BodyGen, which utilizes (1) topology-aware self-attention for both design and control, enabling efficient morphology representation with lightweight model sizes; (2) a temporal credit assignment mechanism that ensures balanced reward signals for optimization. With our findings, Body achieves an average 60.03% performance improvement against state-of-the-art baselines. We provide codes and more results on the website: https://genesisorigin.github.io.


What Makes a Good Diffusion Planner for Decision Making?

arXiv.org Artificial Intelligence

Diffusion models have recently shown significant potential in solving decision-making problems, particularly in generating behavior plans -- also known as diffusion planning. While numerous studies have demonstrated the impressive performance of diffusion planning, the mechanisms behind the key components of a good diffusion planner remain unclear and the design choices are highly inconsistent in existing studies. In this work, we address this issue through systematic empirical experiments on diffusion planning in an offline reinforcement learning (RL) setting, providing practical insights into the essential components of diffusion planning. We trained and evaluated over 6,000 diffusion models, identifying the critical components such as guided sampling, network architecture, action generation and planning strategy. We revealed that some design choices opposite to the common practice in previous work in diffusion planning actually lead to better performance, e.g., unconditional sampling with selection can be better than guided sampling and Transformer outperforms U-Net as denoising network. Based on these insights, we suggest a simple yet strong diffusion planning baseline that achieves state-of-the-art results on standard offline RL benchmarks.


Habitizing Diffusion Planning for Efficient and Effective Decision Making

arXiv.org Artificial Intelligence

Diffusion models have shown great promise in decision-making, also known as diffusion planning. However, the slow inference speeds limit their potential for broader real-world applications. Here, we introduce Habi, a general framework that transforms powerful but slow diffusion planning models into fast decision-making models, which mimics the cognitive process in the brain that costly goal-directed behavior gradually transitions to efficient habitual behavior with repetitive practice. Even using a laptop CPU, the habitized model can achieve an average 800+ Hz decision-making frequency (faster than previous diffusion planners by orders of magnitude) on standard offline reinforcement learning benchmarks D4RL, while maintaining comparable or even higher performance compared to its corresponding diffusion planner. Our work proposes a fresh perspective of leveraging powerful diffusion models for real-world decision-making tasks. We also provide robust evaluations and analysis, offering insights from both biological and engineering perspectives for efficient and effective decision-making.


DexDiffuser: Generating Dexterous Grasps with Diffusion Models

arXiv.org Artificial Intelligence

We introduce DexDiffuser, a novel dexterous grasping method that generates, evaluates, and refines grasps on partial object point clouds. DexDiffuser includes the conditional diffusion-based grasp sampler DexSampler and the dexterous grasp evaluator DexEvaluator. DexSampler generates high-quality grasps conditioned on object point clouds by iterative denoising of randomly sampled grasps. We also introduce two grasp refinement strategies: Evaluator-Guided Diffusion (EGD) and Evaluator-based Sampling Refinement (ESR). Our simulation and real-world experiments on the Allegro Hand consistently demonstrate that DexDiffuser outperforms the state-of-the-art multi-finger grasp generation method FFHNet with an, on average, 21.71--22.20\% higher grasp success rate.


GoNet: An Approach-Constrained Generative Grasp Sampling Network

arXiv.org Artificial Intelligence

This work addresses the problem of learning approach-constrained data-driven grasp samplers. To this end, we propose GoNet: a generative grasp sampler that can constrain the grasp approach direction to a subset of SO(3). The key insight is to discretize SO(3) into a predefined number of bins and train GoNet to generate grasps whose approach directions are within those bins. At run-time, the bin aligning with the second largest principal component of the observed point cloud is selected. GoNet is benchmarked against GraspNet, a state-of-the-art unconstrained grasp sampler, in an unconfined grasping experiment in simulation and on an unconfined and confined grasping experiment in the real world. The results demonstrate that GoNet achieves higher success-over-coverage in simulation and a 12%-18% higher success rate in real-world table-picking and shelf-picking tasks than the baseline.


Enabling Robot Manipulation of Soft and Rigid Objects with Vision-based Tactile Sensors

arXiv.org Artificial Intelligence

Endowing robots with tactile capabilities opens up new possibilities for their interaction with the environment, including the ability to handle fragile and/or soft objects. In this work, we equip the robot gripper with low-cost vision-based tactile sensors and propose a manipulation algorithm that adapts to both rigid and soft objects without requiring any knowledge of their properties. The algorithm relies on a touch and slip detection method, which considers the variation in the tactile images with respect to reference ones. We validate the approach on seven different objects, with different properties in terms of rigidity and fragility, to perform unplugging and lifting tasks. Furthermore, to enhance applicability, we combine the manipulation algorithm with a grasp sampler for the task of finding and picking a grape from a bunch without damaging~it.