Lu, Guoyu
Evaluation of OpenAI o1: Opportunities and Challenges of AGI
Zhong, Tianyang, Liu, Zhengliang, Pan, Yi, Zhang, Yutong, Zhou, Yifan, Liang, Shizhe, Wu, Zihao, Lyu, Yanjun, Shu, Peng, Yu, Xiaowei, Cao, Chao, Jiang, Hanqi, Chen, Hanxu, Li, Yiwei, Chen, Junhao, Hu, Huawen, Liu, Yihen, Zhao, Huaqin, Xu, Shaochen, Dai, Haixing, Zhao, Lin, Zhang, Ruidong, Zhao, Wei, Yang, Zhenyuan, Chen, Jingyuan, Wang, Peilong, Ruan, Wei, Wang, Hui, Zhao, Huan, Zhang, Jing, Ren, Yiming, Qin, Shihuan, Chen, Tong, Li, Jiaxi, Zidan, Arif Hassan, Jahin, Afrar, Chen, Minheng, Xia, Sichen, Holmes, Jason, Zhuang, Yan, Wang, Jiaqi, Xu, Bochen, Xia, Weiran, Yu, Jichao, Tang, Kaibo, Yang, Yaxuan, Sun, Bolun, Yang, Tao, Lu, Guoyu, Wang, Xianqiao, Chai, Lilong, Li, He, Lu, Jin, Sun, Lichao, Zhang, Xin, Ge, Bao, Hu, Xintao, Zhang, Lian, Zhou, Hua, Zhang, Lu, Zhang, Shu, Liu, Ninghao, Jiang, Bei, Kong, Linglong, Xiang, Zhen, Ren, Yudan, Liu, Jun, Jiang, Xi, Bao, Yu, Zhang, Wei, Li, Xiang, Li, Gang, Liu, Wei, Shen, Dinggang, Sikora, Andrea, Zhai, Xiaoming, Zhu, Dajiang, Liu, Tianming
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
LLMs for Coding and Robotics Education
Shu, Peng, Zhao, Huaqin, Jiang, Hanqi, Li, Yiwei, Xu, Shaochen, Pan, Yi, Wu, Zihao, Liu, Zhengliang, Lu, Guoyu, Guan, Le, Chen, Gong, Liu, Xianqiao Wang Tianming
Large language models and multimodal large language models have revolutionized artificial intelligence recently. An increasing number of regions are now embracing these advanced technologies. Within this context, robot coding education is garnering increasing attention. To teach young children how to code and compete in robot challenges, large language models are being utilized for robot code explanation, generation, and modification. In this paper, we highlight an important trend in robot coding education. We test several mainstream large language models on both traditional coding tasks and the more challenging task of robot code generation, which includes block diagrams. Our results show that GPT-4V outperforms other models in all of our tests but struggles with generating block diagram images.
AGI: Artificial General Intelligence for Education
Latif, Ehsan, Mai, Gengchen, Nyaaba, Matthew, Wu, Xuansheng, Liu, Ninghao, Lu, Guoyu, Li, Sheng, Liu, Tianming, Zhai, Xiaoming
Artificial general intelligence (AGI) has gained global recognition as a future technology due to the emergence of breakthrough large language models and chatbots such as GPT-4 and ChatGPT, respectively. Compared to conventional AI models, typically designed for a limited range of tasks, demand significant amounts of domain-specific data for training and may not always consider intricate interpersonal dynamics in education. AGI, driven by the recent large pre-trained models, represents a significant leap in the capability of machines to perform tasks that require human-level intelligence, such as reasoning, problem-solving, decision-making, and even understanding human emotions and social interactions. This position paper reviews AGI's key concepts, capabilities, scope, and potential within future education, including achieving future educational goals, designing pedagogy and curriculum, and performing assessments. It highlights that AGI can significantly improve intelligent tutoring systems, educational assessment, and evaluation procedures. AGI systems can adapt to individual student needs, offering tailored learning experiences. They can also provide comprehensive feedback on student performance and dynamically adjust teaching methods based on student progress. The paper emphasizes that AGI's capabilities extend to understanding human emotions and social interactions, which are critical in educational settings. The paper discusses that ethical issues in education with AGI include data bias, fairness, and privacy and emphasizes the need for codes of conduct to ensure responsible AGI use in academic settings like homework, teaching, and recruitment. We also conclude that the development of AGI necessitates interdisciplinary collaborations between educators and AI engineers to advance research and application efforts.
Towards Artificial General Intelligence (AGI) in the Internet of Things (IoT): Opportunities and Challenges
Dou, Fei, Ye, Jin, Yuan, Geng, Lu, Qin, Niu, Wei, Sun, Haijian, Guan, Le, Lu, Guoyu, Mai, Gengchen, Liu, Ninghao, Lu, Jin, Liu, Zhengliang, Wu, Zihao, Tan, Chenjiao, Xu, Shaochen, Wang, Xianqiao, Li, Guoming, Chai, Lilong, Li, Sheng, Sun, Jin, Sun, Hongyue, Shao, Yunli, Li, Changying, Liu, Tianming, Song, Wenzhan
Artificial General Intelligence (AGI), possessing the capacity to comprehend, learn, and execute tasks with human cognitive abilities, engenders significant anticipation and intrigue across scientific, commercial, and societal arenas. This fascination extends particularly to the Internet of Things (IoT), a landscape characterized by the interconnection of countless devices, sensors, and systems, collectively gathering and sharing data to enable intelligent decision-making and automation. This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the IoT. Specifically, it starts by outlining the fundamental principles of IoT and the critical role of Artificial Intelligence (AI) in IoT systems. Subsequently, it delves into AGI fundamentals, culminating in the formulation of a conceptual framework for AGI's seamless integration within IoT. The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education. However, adapting AGI to resource-constrained IoT settings necessitates dedicated research efforts. Furthermore, the paper addresses constraints imposed by limited computing resources, intricacies associated with large-scale IoT communication, as well as the critical concerns pertaining to security and privacy.
SAM for Poultry Science
Yang, Xiao, Dai, Haixing, Wu, Zihao, Bist, Ramesh, Subedi, Sachin, Sun, Jin, Lu, Guoyu, Li, Changying, Liu, Tianming, Chai, Lilong
In recent years, the agricultural industry has witnessed significant advancements in artificial intelligence (AI), particularly with the development of large-scale foundational models. Among these foundation models, the Segment Anything Model (SAM), introduced by Meta AI Research, stands out as a groundbreaking solution for object segmentation tasks. While SAM has shown success in various agricultural applications, its potential in the poultry industry, specifically in the context of cage-free hens, remains relatively unexplored. This study aims to assess the zero-shot segmentation performance of SAM on representative chicken segmentation tasks, including part-based segmentation and the use of infrared thermal images, and to explore chicken-tracking tasks by using SAM as a segmentation tool. The results demonstrate SAM's superior performance compared to SegFormer and SETR in both whole and part-based chicken segmentation. SAM-based object tracking also provides valuable data on the behavior and movement patterns of broiler birds. The findings of this study contribute to a better understanding of SAM's potential in poultry science and lay the foundation for future advancements in chicken segmentation and tracking.
AGI for Agriculture
Lu, Guoyu, Li, Sheng, Mai, Gengchen, Sun, Jin, Zhu, Dajiang, Chai, Lilong, Sun, Haijian, Wang, Xianqiao, Dai, Haixing, Liu, Ninghao, Xu, Rui, Petti, Daniel, Li, Changying, Liu, Tianming, Li, Changying
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry.