Goto

Collaborating Authors

 Lozano-Pérez, Tomás


Partially Observable Task and Motion Planning with Uncertainty and Risk Awareness

arXiv.org Artificial Intelligence

Integrated task and motion planning (TAMP) has proven to be a valuable approach to generalizable long-horizon robotic manipulation and navigation problems. However, the typical TAMP problem formulation assumes full observability and deterministic action effects. These assumptions limit the ability of the planner to gather information and make decisions that are risk-aware. We propose a strategy for TAMP with Uncertainty and Risk Awareness (TAMPURA) that is capable of efficiently solving long-horizon planning problems with initial-state and action outcome uncertainty, including problems that require information gathering and avoiding undesirable and irreversible outcomes. Our planner reasons under uncertainty at both the abstract task level and continuous controller level. Given a set of closed-loop goal-conditioned controllers operating in the primitive action space and a description of their preconditions and potential capabilities, we learn a high-level abstraction that can be solved efficiently and then refined to continuous actions for execution. We demonstrate our approach on several robotics problems where uncertainty is a crucial factor and show that reasoning under uncertainty in these problems outperforms previously proposed determinized planning, direct search, and reinforcement learning strategies. Lastly, we demonstrate our planner on two real-world robotics problems using recent advancements in probabilistic perception.


What Planning Problems Can A Relational Neural Network Solve?

arXiv.org Machine Learning

Goal-conditioned policies are generally understood to be "feed-forward" circuits, in the form of neural networks that map from the current state and the goal specification to the next action to take. However, under what circumstances such a policy can be learned and how efficient the policy will be are not well understood. In this paper, we present a circuit complexity analysis for relational neural networks (such as graph neural networks and transformers) representing policies for planning problems, by drawing connections with serialized goal regression search (S-GRS). We show that there are three general classes of planning problems, in terms of the growth of circuit width and depth as a function of the number of objects and planning horizon, providing constructive proofs. We also illustrate the utility of this analysis for designing neural networks for policy learning.


Robust Planning for Multi-stage Forceful Manipulation

arXiv.org Artificial Intelligence

Multi-step forceful manipulation tasks, such as opening a push-and-twist childproof bottle, require a robot to make various planning choices that are substantially impacted by the requirement to exert force during the task. The robot must reason over discrete and continuous choices relating to the sequence of actions, such as whether to pick up an object, and the parameters of each of those actions, such how to grasp the object. To enable planning and executing forceful manipulation, we augment an existing task and motion planner with constraints that explicitly consider torque and frictional limits, captured through the proposed forceful kinematic chain constraint. In three domains, opening a childproof bottle, twisting a nut and cutting a vegetable, we demonstrate how the system selects from among a combinatorial set of strategies.We also show how cost-sensitive planning can be used to find strategies and parameters that are robust to uncertainty in the physical parameters.


Learning Reusable Manipulation Strategies

arXiv.org Artificial Intelligence

Humans demonstrate an impressive ability to acquire and generalize manipulation "tricks." Even from a single demonstration, such as using soup ladles to reach for distant objects, we can apply this skill to new scenarios involving different object positions, sizes, and categories (e.g., forks and hammers). Additionally, we can flexibly combine various skills to devise long-term plans. In this paper, we present a framework that enables machines to acquire such manipulation skills, referred to as "mechanisms," through a single demonstration and self-play. Our key insight lies in interpreting each demonstration as a sequence of changes in robot-object and object-object contact modes, which provides a scaffold for learning detailed samplers for continuous parameters. These learned mechanisms and samplers can be seamlessly integrated into standard task and motion planners, enabling their compositional use.


Embodied Lifelong Learning for Task and Motion Planning

arXiv.org Artificial Intelligence

A robot deployed in a home over long stretches of time faces a true lifelong learning problem. As it seeks to provide assistance to its users, the robot should leverage any accumulated experience to improve its own knowledge and proficiency. We formalize this setting with a novel formulation of lifelong learning for task and motion planning (TAMP), which endows our learner with the compositionality of TAMP systems. Exploiting the modularity of TAMP, we develop a mixture of generative models that produces candidate continuous parameters for a planner. Whereas most existing lifelong learning approaches determine a priori how data is shared across various models, our approach learns shared and non-shared models and determines which to use online during planning based on auxiliary tasks that serve as a proxy for each model's understanding of a state. Our method exhibits substantial improvements (over time and compared to baselines) in planning success on 2D and BEHAVIOR domains.


DiMSam: Diffusion Models as Samplers for Task and Motion Planning under Partial Observability

arXiv.org Artificial Intelligence

Task and Motion Planning (TAMP) approaches are effective at planning long-horizon autonomous robot manipulation. However, it can be difficult to apply them to domains where the environment and its dynamics are not fully known. We propose to overcome these limitations by leveraging deep generative modeling, specifically diffusion models, to learn constraints and samplers that capture these difficult-to-engineer aspects of the planning model. These learned samplers are composed and combined within a TAMP solver in order to find action parameter values jointly that satisfy the constraints along a plan. To tractably make predictions for unseen objects in the environment, we define these samplers on low-dimensional learned latent embeddings of changing object state. We evaluate our approach in an articulated object manipulation domain and show how the combination of classical TAMP, generative learning, and latent embeddings enables long-horizon constraint-based reasoning. We also apply the learned sampler in the real world. More details are available at https://sites.google.com/view/dimsam-tamp


Learning Efficient Abstract Planning Models that Choose What to Predict

arXiv.org Artificial Intelligence

Abstract: An effective approach to solving long-horizon tasks in robotics domains with continuous state and action spaces is bilevel planning, wherein a highlevel search over an abstraction of an environment is used to guide low-level decision-making. Recent work has shown how to enable such bilevel planning by learning abstract models in the form of symbolic operators and neural samplers. In this work, we show that existing symbolic operator learning approaches fall short in many robotics domains where a robot's actions tend to cause a large number of irrelevant changes in the abstract state. This is primarily because they attempt to learn operators that exactly predict all observed changes in the abstract state. To overcome this issue, we propose to learn operators that'choose what to predict' by only modelling changes necessary for abstract planning to achieve specified goals. Experimentally, we show that our approach learns operators that lead to efficient planning across 10 different hybrid robotics domains, including 4 from the challenging BEHAVIOR-100 benchmark, while generalizing to novel initial states, goals, and objects.


Compositional Diffusion-Based Continuous Constraint Solvers

arXiv.org Artificial Intelligence

This paper introduces an approach for learning to solve continuous constraint satisfaction problems (CCSP) in robotic reasoning and planning. Previous methods primarily rely on hand-engineering or learning generators for specific constraint types and then rejecting the value assignments when other constraints are violated. By contrast, our model, the compositional diffusion continuous constraint solver (Diffusion-CCSP) derives global solutions to CCSPs by representing them as factor graphs and combining the energies of diffusion models trained to sample for individual constraint types. Diffusion-CCSP exhibits strong generalization to novel combinations of known constraints, and it can be integrated into a task and motion planner to devise long-horizon plans that include actions with both discrete and continuous parameters. Project site: https://diffusion-ccsp.github.io/


PDSketch: Integrated Planning Domain Programming and Learning

arXiv.org Artificial Intelligence

This paper studies a model learning and online planning approach towards building flexible and general robots. Specifically, we investigate how to exploit the locality and sparsity structures in the underlying environmental transition model to improve model generalization, data-efficiency, and runtime-efficiency. We present a new domain definition language, named PDSketch. It allows users to flexibly define high-level structures in the transition models, such as object and feature dependencies, in a way similar to how programmers use TensorFlow or PyTorch to specify kernel sizes and hidden dimensions of a convolutional neural network. The details of the transition model will be filled in by trainable neural networks. Based on the defined structures and learned parameters, PDSketch automatically generates domain-independent planning heuristics without additional training. The derived heuristics accelerate the performance-time planning for novel goals.


Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion Planning

arXiv.org Artificial Intelligence

We present a learning-enabled Task and Motion Planning (TAMP) algorithm for solving mobile manipulation problems in environments with many articulated and movable obstacles. Our idea is to bias the search procedure of a traditional TAMP planner with a learned plan feasibility predictor. The core of our algorithm is PIGINet, a novel Transformer-based learning method that takes in a task plan, the goal, and the initial state, and predicts the probability of finding motion trajectories associated with the task plan. We integrate PIGINet within a TAMP planner that generates a diverse set of high-level task plans, sorts them by their predicted likelihood of feasibility, and refines them in that order. We evaluate the runtime of our TAMP algorithm on seven families of kitchen rearrangement problems, comparing its performance to that of non-learning baselines. Our experiments show that PIGINet substantially improves planning efficiency, cutting down runtime by 80% on problems with small state spaces and 10%-50% on larger ones, after being trained on only 150-600 problems. Finally, it also achieves zero-shot generalization to problems with unseen object categories thanks to its visual encoding of objects. Project page https://piginet.github.io/.