Goto

Collaborating Authors

 Lowe, Ryan


What are human values, and how do we align AI to them?

arXiv.org Artificial Intelligence

There is an emerging consensus that we need to align AI systems with human values (Gabriel, 2020; Ji et al., 2024), but it remains unclear how to apply this to language models in practice. We split the problem of "aligning to human values" into three parts: first, eliciting values from people; second, reconciling those values into an alignment target for training ML models; and third, actually training the model. In this paper, we focus on the first two parts, and ask the question: what are "good" ways to synthesize diverse human inputs about values into a target for aligning language models? To answer this question, we first define a set of 6 criteria that we believe must be satisfied for an alignment target to shape model behavior in accordance with human values. We then propose a process for eliciting and reconciling values called Moral Graph Elicitation (MGE), which uses a large language model to interview participants about their values in particular contexts; our approach is inspired by the philosophy of values advanced by Taylor (1977), Chang (2004), and others. We trial MGE with a representative sample of 500 Americans, on 3 intentionally divisive prompts (e.g. advice about abortion). Our results demonstrate that MGE is promising for improving model alignment across all 6 criteria. For example, almost all participants (89.1%) felt well represented by the process, and (89%) thought the final moral graph was fair, even if their value wasn't voted as the wisest. Our process often results in "expert" values (e.g. values from women who have solicited abortion advice) rising to the top of the moral graph, without defining who is considered an expert in advance.


GPT-4 Technical Report

arXiv.org Artificial Intelligence

We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.


Recursively Summarizing Books with Human Feedback

arXiv.org Artificial Intelligence

A major challenge for scaling machine learning is training models to perform tasks that are very difficult or time-consuming for humans to evaluate. We present progress on this problem on the task of abstractive summarization of entire fiction novels. Our method combines learning from human feedback with recursive task decomposition: we use models trained on smaller parts of the task to assist humans in giving feedback on the broader task. We collect a large volume of demonstrations and comparisons from human labelers, and fine-tune GPT-3 using behavioral cloning and reward modeling to do summarization recursively. At inference time, the model first summarizes small sections of the book and then recursively summarizes these summaries to produce a summary of the entire book. Our human labelers are able to supervise and evaluate the models quickly, despite not having read the entire books themselves. Our resulting model generates sensible summaries of entire books, even matching the quality of human-written summaries in a few cases ($\sim5\%$ of books). We achieve state-of-the-art results on the recent BookSum dataset for book-length summarization. A zero-shot question-answering model using these summaries achieves state-of-the-art results on the challenging NarrativeQA benchmark for answering questions about books and movie scripts. We release datasets of samples from our model.


Learning to summarize from human feedback

arXiv.org Artificial Intelligence

As language models become more powerful, training and evaluation are increasingly bottlenecked by the data and metrics used for a particular task. For example, summarization models are often trained to predict human reference summaries and evaluated using ROUGE, but both of these metrics are rough proxies for what we really care about---summary quality. In this work, we show that it is possible to significantly improve summary quality by training a model to optimize for human preferences. We collect a large, high-quality dataset of human comparisons between summaries, train a model to predict the human-preferred summary, and use that model as a reward function to fine-tune a summarization policy using reinforcement learning. We apply our method to a version of the TL;DR dataset of Reddit posts and find that our models significantly outperform both human reference summaries and much larger models fine-tuned with supervised learning alone. Our models also transfer to CNN/DM news articles, producing summaries nearly as good as the human reference without any news-specific fine-tuning. We conduct extensive analyses to understand our human feedback dataset and fine-tuned models. We establish that our reward model generalizes to new datasets, and that optimizing our reward model results in better summaries than optimizing ROUGE according to humans. We hope the evidence from our paper motivates machine learning researchers to pay closer attention to how their training loss affects the model behavior they actually want.


Ideas for Improving the Field of Machine Learning: Summarizing Discussion from the NeurIPS 2019 Retrospectives Workshop

arXiv.org Artificial Intelligence

This report documents ideas for improving the field of machine learning, which arose from discussions at the ML Retrospectives workshop at NeurIPS 2019. The goal of the report is to disseminate these ideas more broadly, and in turn encourage continuing discussion about how the field could improve along these axes. We focus on topics that were most discussed at the workshop: incentives for encouraging alternate forms of scholarship, restructuring the review process, participation from academia and industry, and how we might better train computer scientists as scientists. Videos from the workshop can be accessed at Lowe et al. (2019).


On the Pitfalls of Measuring Emergent Communication

arXiv.org Artificial Intelligence

How do we know if communication is emerging in a multi-agent system? The vast majority of recent papers on emergent communication show that adding a communication channel leads to an increase in reward or task success. This is a useful indicator, but provides only a coarse measure of the agent's learned communication abilities. As we move towards more complex environments, it becomes imperative to have a set of finer tools that allow qualitative and quantitative insights into the emergence of communication. This may be especially useful to allow humans to monitor agents' behaviour, whether for fault detection, assessing performance, or even building trust. In this paper, we examine a few intuitive existing metrics for measuring communication, and show that they can be misleading. Specifically, by training deep reinforcement learning agents to play simple matrix games augmented with a communication channel, we find a scenario where agents appear to communicate (their messages provide information about their subsequent action), and yet the messages do not impact the environment or other agent in any way. We explain this phenomenon using ablation studies and by visualizing the representations of the learned policies. We also survey some commonly used metrics for measuring emergent communication, and provide recommendations as to when these metrics should be used.


The Second Conversational Intelligence Challenge (ConvAI2)

arXiv.org Artificial Intelligence

We describe the setting and results of the ConvAI2 NeurIPS competition that aims to further the state-of-the-art in open-domain chatbots. Some key takeaways from the competition are: (i) pretrained Transformer variants are currently the best performing models on this task, (ii) but to improve performance on multi-turn conversations with humans, future systems must go beyond single word metrics like perplexity to measure the performance across sequences of utterances (conversations) in terms of repetition, consistency and balance of dialogue acts (e.g. The Conversational Intelligence Challenge aims at finding approaches to creating highquality dialogue agents capable of meaningful open domain conversation. Today, the progress in the field is significantly hampered by the absence of established benchmark tasks for non-goal-oriented dialogue systems (chatbots) and solid evaluation criteria for automatic assessment of dialogue quality. The aim of this competition was therefore to establish a concrete scenario for testing chatbots that aim to engage humans, and become a standard evaluation tool in order to make such systems directly comparable, including open source datasets, evaluation code (both automatic evaluations and code to run the human evaluation on Mechanical Turk), model baselines and the winning model itself. Taking into account the results of the previous edition, this year we improved the task, the evaluation process, and the human conversationalists' experience. We did this in part by making the setup simpler for the competitors, and in part by making the conversations more engaging for humans. We provided a dataset from the beginning, Persona-Chat, whose training set consists of conversations between crowdworkers who were randomly paired and asked to act the part of a given provided persona (randomly assigned, and created by another set of crowdworkers). The paired workers were asked to chat naturally and to get to know each other during the conversation. This produces interesting and engaging conversations that learning agents can try to mimic.


Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments

Neural Information Processing Systems

We explore deep reinforcement learning methods for multi-agent domains. We begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning is challenged by an inherent non-stationarity of the environment, while policy gradient suffers from a variance that increases as the number of agents grows. We then present an adaptation of actor-critic methods that considers action policies of other agents and is able to successfully learn policies that require complex multi-agent coordination. Additionally, we introduce a training regimen utilizing an ensemble of policies for each agent that leads to more robust multi-agent policies. We show the strength of our approach compared to existing methods in cooperative as well as competitive scenarios, where agent populations are able to discover various physical and informational coordination strategies.


A Survey of Available Corpora for Building Data-Driven Dialogue Systems

arXiv.org Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.


A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues

AAAI Conferences

Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterances in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.