Goto

Collaborating Authors

 Lotufo, Roberto


PublicHearingBR: A Brazilian Portuguese Dataset of Public Hearing Transcripts for Summarization of Long Documents

arXiv.org Artificial Intelligence

This paper introduces PublicHearingBR, a Brazilian Portuguese dataset designed for summarizing long documents. The dataset consists of transcripts of public hearings held by the Brazilian Chamber of Deputies, paired with news articles and structured summaries containing the individuals participating in the hearing and their statements or opinions. The dataset supports the development and evaluation of long document summarization systems in Portuguese. Our contributions include the dataset, a hybrid summarization system to establish a baseline for future studies, and a discussion on evaluation metrics for summarization involving large language models, addressing the challenge of hallucination in the generated summaries. As a result of this discussion, the dataset also provides annotated data that can be used in Natural Language Inference tasks in Portuguese.


MLissard: Multilingual Long and Simple Sequential Reasoning Benchmarks

arXiv.org Artificial Intelligence

Language models are now capable of solving tasks that require dealing with long sequences consisting of hundreds of thousands of tokens. However, they often fail on tasks that require repetitive use of simple rules, even on sequences that are much shorter than those seen during training. For example, state-of-the-art LLMs can find common items in two lists with up to 20 items but fail when lists have 80 items. In this paper, we introduce MLissard, a multilingual benchmark designed to evaluate models' abilities to process and generate texts of varied lengths and offers a mechanism for controlling sequence complexity. Our evaluation of open-source and proprietary models show a consistent decline in performance across all models and languages as the complexity of the sequence increases. Surprisingly, the use of in-context examples in languages other than English helps increase extrapolation performance significantly. The datasets and code are available at https://github.com/unicamp-dl/Lissard


ptt5-v2: A Closer Look at Continued Pretraining of T5 Models for the Portuguese Language

arXiv.org Artificial Intelligence

Despite advancements in Natural Language Processing (NLP) and the growing availability of pretrained models, the English language remains the primary focus of model development. Continued pretraining on language-specific corpora provides a practical solution for adapting models to other languages. However, the impact of different pretraining settings on downstream tasks remains underexplored. This work introduces $\texttt{ptt5-v2}$, investigating the continued pretraining of T5 models for Portuguese. We first develop a baseline set of settings and pretrain models with sizes up to 3B parameters. Finetuning on three Portuguese downstream tasks (assin2 STS, assin2 RTE, and TweetSentBR) yields SOTA results on the latter two. We then explore the effects of different pretraining configurations, including quality filters, optimization strategies, and multi-epoch pretraining. Perhaps surprisingly, their impact remains subtle compared to our baseline. We release $\texttt{ptt5-v2}$ pretrained checkpoints and the finetuned MonoT5 rerankers on HuggingFace at https://huggingface.co/collections/unicamp-dl/ptt5-v2-666538a650188ba00aa8d2d0 and https://huggingface.co/collections/unicamp-dl/monoptt5-66653981877df3ea727f720d.


Measuring Cross-lingual Transfer in Bytes

arXiv.org Artificial Intelligence

Multilingual pretraining has been a successful solution to the challenges posed by the lack of resources for languages. These models can transfer knowledge to target languages with minimal or no examples. Recent research suggests that monolingual models also have a similar capability, but the mechanisms behind this transfer remain unclear. Some studies have explored factors like language contamination and syntactic similarity. An emerging line of research suggests that the representations learned by language models contain two components: a language-specific and a language-agnostic component. The latter is responsible for transferring a more universal knowledge. However, there is a lack of comprehensive exploration of these properties across diverse target languages. To investigate this hypothesis, we conducted an experiment inspired by the work on the Scaling Laws for Transfer. We measured the amount of data transferred from a source language to a target language and found that models initialized from diverse languages perform similarly to a target language in a cross-lingual setting. This was surprising because the amount of data transferred to 10 diverse target languages, such as Spanish, Korean, and Finnish, was quite similar. We also found evidence that this transfer is not related to language contamination or language proximity, which strengthens the hypothesis that the model also relies on language-agnostic knowledge. Our experiments have opened up new possibilities for measuring how much data represents the language-agnostic representations learned during pretraining.


Lissard: Long and Simple Sequential Reasoning Datasets

arXiv.org Artificial Intelligence

The efficacy of language models, particularly in reasoning tasks, is significantly impacted by longer text lengths than those seen in training [19, 2, 15]. This phenomenon, referred to as "Length Generalization" or "Length Extrapolation" in the literature [25, 30], is also common in models based on the Transformer architecture [20, 16, 8, 32]. Notably, even Large Language Models (LLMs), known for their strong performance in a wide range of tasks and domains, are not immune to this problem [2, 5]. Recent research tried to address this challenge by modifications to the positional embeddings [25, 6, 7, 19, 13] or by using prompting strategies such as scratchpad [23] and chain-of-thought reasoning [28]. Nevertheless, there remains a lack of datasets specifically designed for the systematic evaluation of the problem.


ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs

arXiv.org Artificial Intelligence

ExaRanker recently introduced an approach to training information retrieval (IR) models, incorporating natural language explanations as additional labels. The method addresses the challenge of limited labeled examples, leading to improvements in the effectiveness of IR models. However, the initial results were based on proprietary language models such as GPT-3.5, which posed constraints on dataset size due to its cost and data privacy. In this paper, we introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations. The method has been tested using different LLMs and datasets sizes to better comprehend the effective contribution of data augmentation. Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases. Notably, the data augmentation method proves advantageous even with large datasets, as evidenced by ExaRanker surpassing the target baseline by 0.6 nDCG@10 points in our study.


INACIA: Integrating Large Language Models in Brazilian Audit Courts: Opportunities and Challenges

arXiv.org Artificial Intelligence

This paper introduces INACIA (Instru\c{c}\~ao Assistida com Intelig\^encia Artificial), a groundbreaking system designed to integrate Large Language Models (LLMs) into the operational framework of Brazilian Federal Court of Accounts (TCU). The system automates various stages of case analysis, including basic information extraction, admissibility examination, Periculum in mora and Fumus boni iuris analyses, and recommendations generation. Through a series of experiments, we demonstrate INACIA's potential in extracting relevant information from case documents, evaluating its legal plausibility, and formulating propositions for judicial decision-making. Utilizing a validation dataset alongside LLMs, our evaluation methodology presents an innovative approach to assessing system performance, correlating highly with human judgment. The results highlight INACIA's proficiency in handling complex legal tasks, indicating its suitability for augmenting efficiency and judicial fairness within legal systems. The paper also discusses potential enhancements and future applications, positioning INACIA as a model for worldwide AI integration in legal domains.


ExaRanker: Explanation-Augmented Neural Ranker

arXiv.org Artificial Intelligence

Recent work has shown that inducing a large language model (LLM) to generate explanations prior to outputting an answer is an effective strategy to improve performance on a wide range of reasoning tasks. In this work, we show that neural rankers also benefit from explanations. We use LLMs such as GPT-3.5 to augment retrieval datasets with explanations and train a sequence-to-sequence ranking model to output a relevance label and an explanation for a given query-document pair. Our model, dubbed ExaRanker, finetuned on a few thousand examples with synthetic explanations performs on par with models finetuned on 3x more examples without explanations. Furthermore, the ExaRanker model incurs no additional computational cost during ranking, and allows explanations to be requested on demand.


InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval

arXiv.org Artificial Intelligence

Recently, InPars introduced a method to efficiently use large language models (LLMs) in information retrieval tasks: via few-shot examples, an LLM is induced to generate relevant queries for documents. These synthetic query-document pairs can then be used to train a retriever. However, InPars and, more recently, Promptagator, rely on proprietary LLMs such as GPT-3 and FLAN to generate such datasets. In this work we introduce InPars-v2, a dataset generator that uses open-source LLMs and existing powerful rerankers to select synthetic query-document pairs for training. A simple BM25 retrieval pipeline followed by a monoT5 reranker finetuned on InPars-v2 data achieves new state-of-the-art results on the BEIR benchmark.


Evaluating GPT-3.5 and GPT-4 Models on Brazilian University Admission Exams

arXiv.org Artificial Intelligence

The present study aims to explore the capabilities of Language Models (LMs) in tackling high-stakes multiple-choice tests, represented here by the Exame Nacional do Ensino M\'edio (ENEM), a multidisciplinary entrance examination widely adopted by Brazilian universities. This exam poses challenging tasks for LMs, since its questions may span into multiple fields of knowledge, requiring understanding of information from diverse domains. For instance, a question may require comprehension of both statistics and biology to be solved. This work analyzed responses generated by GPT-3.5 and GPT-4 models for questions presented in the 2009-2017 exams, as well as for questions of the 2022 exam, which were made public after the training of the models was completed. Furthermore, different prompt strategies were tested, including the use of Chain-of-Thought (CoT) prompts to generate explanations for answers. On the 2022 edition, the best-performing model, GPT-4 with CoT, achieved an accuracy of 87%, largely surpassing GPT-3.5 by 11 points. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.