Goto

Collaborating Authors

 Long, Phil


Learning large-margin halfspaces with more malicious noise

Neural Information Processing Systems

We describe a simple algorithm that runs in time poly(n,1/gamma,1/eps) and learns an unknown n-dimensional gamma-margin halfspace to accuracy 1-eps in the presence of malicious noise, when the noise rate is allowed to be as high as Theta(eps gamma sqrt(log(1/gamma))). Previous efficient algorithms could only learn to accuracy eps in the presence of malicious noise of rate at most Theta(eps gamma). Our algorithm does not work by optimizing a convex loss function. We show that no algorithm for learning gamma-margin halfspaces that minimizes a convex proxy for misclassification error can tolerate malicious noise at a rate greater than Theta(eps gamma); this may partially explain why previous algorithms could not achieve the higher noise tolerance of our new algorithm.


Algorithms and hardness results for parallel large margin learning

Neural Information Processing Systems

We study the fundamental problem of learning an unknown large-margin halfspace in the context of parallel computation. Our main positive result is a parallel algorithm for learning a large-margin halfspace that is based on interior point methods from convex optimization and fast parallel algorithms for matrix computations. We show that this algorithm learns an unknown gamma-margin halfspace over n dimensions using poly(n,1/gamma) processors and runs in time ~O(1/gamma) + O(log n). In contrast, naive parallel algorithms that learn a gamma-margin halfspace in time that depends polylogarithmically on n have Omega(1/gamma^2) runtime dependence on gamma. Our main negative result deals with boosting, which is a standard approach to learning large-margin halfspaces. We give an information-theoretic proof that in the original PAC framework, in which a weak learning algorithm is provided as an oracle that is called by the booster, boosting cannot be parallelized: the ability to call the weak learner multiple times in parallel within a single boosting stage does not reduce the overall number of successive stages of boosting that are required.


Adaptive Martingale Boosting

Neural Information Processing Systems

In recent work Long and Servedio LS05short presented a ``martingale boosting'' algorithm that works by constructing a branching program over weak classifiers and has a simple analysis based on elementary properties of random walks. LS05short showed that this martingale booster can tolerate random classification noise when it is run with a noise-tolerant weak learner; however, a drawback of the algorithm is that it is not adaptive, i.e. it cannot effectively take advantage of variation in the quality of the weak classifiers it receives. In this paper we present a variant of the original martingale boosting algorithm and prove that it is adaptive. This adaptiveness is achieved by modifying the original algorithm so that the random walks that arise in its analysis have different step size depending on the quality of the weak learner at each stage. The new algorithm inherits the desirable properties of the original LS05short algorithm, such as random classification noise tolerance, and has several other advantages besides adaptiveness: it requires polynomially fewer calls to the weak learner than the original algorithm, and it can be used with confidence-rated weak hypotheses that output real values rather than Boolean predictions.


One-Pass Boosting

Neural Information Processing Systems

This paper studies boosting algorithms that make a single pass over a set of base classifiers. We first analyze a one-pass algorithm in the setting of boosting with diverse base classifiers. Our guarantee is the same as the best proved for any boosting algorithm, but our one-pass algorithm is much faster than previous approaches. We next exhibit a random source of examples for which a "picky" variant of AdaBoost that skips poor base classifiers can outperform the standard AdaBoost algorithm, which uses every base classifier, by an exponential factor. Experiments with Reuters and synthetic data show that one-pass boosting can substantially improve on the accuracy of Naive Bayes, and that picky boosting can sometimes lead to a further improvement in accuracy.


Boosting the Area under the ROC Curve

Neural Information Processing Systems

We show that any weak ranker that can achieve an area under the ROC curve slightly better than 1/2 (which can be achieved by random guessing) can be efficiently boostedto achieve an area under the ROC curve arbitrarily close to 1. We further show that this boosting can be performed even in the presence of independent misclassificationnoise, given access to a noise-tolerant weak ranker.


One-Pass Boosting

Neural Information Processing Systems

This paper studies boosting algorithms that make a single pass over a set of base classifiers. Wefirst analyze a one-pass algorithm in the setting of boosting with diverse base classifiers. Our guarantee is the same as the best proved for any boosting algorithm, butour one-pass algorithm is much faster than previous approaches. We next exhibit a random source of examples for which a "picky" variant of AdaBoost thatskips poor base classifiers can outperform the standard AdaBoost algorithm, whichuses every base classifier, by an exponential factor. Experiments with Reuters and synthetic data show that one-pass boosting can substantially improveon the accuracy of Naive Bayes, and that picky boosting can sometimes lead to a further improvement in accuracy.