Long, D.
The 3rd International Planning Competition: Results and Analysis
Fox, M., Long, D.
This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, the paper includes analysis of the results. The results are analysed from several perspectives, in order to address the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems. The paper addresses these questions through statistical analysis of the raw results of the competition, in order to determine which results can be considered to be adequately supported by the data. The paper concludes with a discussion of some challenges for the future of the competition series.
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
Fox, M., Long, D.
In recent years research in the planning community has moved increasingly toward s application of planners to realistic problems involving both time and many typ es of resources. For example, interest in planning demonstrated by the space res earch community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating fo rce behind the progress that has been made in planning since 1998. The third com petition (held in 2002) set the planning community the challenge of handling tim e and numeric resources. This necessitated the development of a modelling langua ge capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community.
Efficient Implementation of the Plan Graph in STAN
Fox, M., Long, D.
STAN is a Graphplan-based planner, so-called because it uses a variety of STate ANalysis techniques to enhance its performance. STAN competed in the AIPS-98 planning competition where it compared well with the other competitors in terms of speed, finding solutions fastest to many of the problems posed. Although the domain analysis techniques STAN exploits are an important factor in its overall performance, we believe that the speed at which STAN solved the competition problems is largely due to the implementation of its plan graph. The implementation is based on two insights: that many of the graph construction operations can be implemented as bit-level logical operations on bit vectors, and that the graph should not be explicitly constructed beyond the fix point. This paper describes the implementation of STAN's plan graph and provides experimental results which demonstrate the circumstances under which advantages can be obtained from using this implementation.
The Automatic Inference of State Invariants in TIM
Fox, M., Long, D.
As planning is applied to larger and richer domains the effort involved in constructing domain descriptions increases and becomes a significant burden on the human application designer. If general planners are to be applied successfully to large and complex domains it is necessary to provide the domain designer with some assistance in building correctly encoded domains. One way of doing this is to provide domain-independent techniques for extracting, from a domain description, knowledge that is implicit in that description and that can assist domain designers in debugging domain descriptions. This knowledge can also be exploited to improve the performance of planners: several researchers have explored the potential of state invariants in speeding up the performance of domain-independent planners. In this paper we describe a process by which state invariants can be extracted from the automatically inferred type structure of a domain. These techniques are being developed for exploitation by STAN, a Graphplan based planner that employs state analysis techniques to enhance its performance.
PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains
Fox, M., Long, D.
In recent years research in the planning community has moved increasingly toward s application of planners to realistic problems involving both time and many typ es of resources. For example, interest in planning demonstrated by the space res earch community has inspired work in observation scheduling, planetary rover ex ploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating fo rce behind the progress that has been made in planning since 1998. The third com petition (held in 2002) set the planning community the challenge of handling tim e and numeric resources. This necessitated the development of a modelling langua ge capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power --- exceeding the capabilities of current planning technology --- and presents a number of important challenges to the research community.
The 3rd International Planning Competition: Results and Analysis
Long, D., Fox, M.
This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, the paper includes analysis of the results. The results are analysed from several perspectives, in order to address the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems. The paper addresses these questions through statistical analysis of the raw results of the competition, in order to determine which results can be considered to be adequately supported by the data. The paper concludes with a discussion of some challenges for the future of the competition series.
Efficient Implementation of the Plan Graph in STAN
Long, D., Fox, M.
STAN is a Graphplan-based planner, so-called because it uses a variety of STate ANalysis techniques to enhance its performance. STAN competed in the AIPS-98 planning competition where it compared well with the other competitors in terms of speed, finding solutions fastest to many of the problems posed. Although the domain analysis techniques STAN exploits are an important factor in its overall performance, we believe that the speed at which STAN solved the competition problems is largely due to the implementation of its plan graph. The implementation is based on two insights: that many of the graph construction operations can be implemented as bit-level logical operations on bit vectors, and that the graph should not be explicitly constructed beyond the fix point. This paper describes the implementation of STAN's plan graph and provides experimental results which demonstrate the circumstances under which advantages can be obtained from using this implementation.