Lohit, Suhas
Evaluating Large Vision-and-Language Models on Children's Mathematical Olympiads
Cherian, Anoop, Peng, Kuan-Chuan, Lohit, Suhas, Matthiesen, Joanna, Smith, Kevin, Tenenbaum, Joshua B.
Recent years have seen a significant progress in the general-purpose problem solving abilities of large vision and language models (LVLMs), such as ChatGPT, Gemini, etc.; some of these breakthroughs even seem to enable AI models to outperform human abilities in varied tasks that demand higher-order cognitive skills. Are the current large AI models indeed capable of generalized problem solving as humans do? A systematic analysis of AI capabilities for joint vision and text reasoning, however, is missing in the current scientific literature. In this paper, we make an effort towards filling this gap, by evaluating state-of-the-art LVLMs on their mathematical and algorithmic reasoning abilities using visuo-linguistic problems from children's Olympiads. Specifically, we consider problems from the Mathematical Kangaroo (MK) Olympiad, which is a popular international competition targeted at children from grades 1-12, that tests children's deeper mathematical abilities using puzzles that are appropriately gauged to their age and skills. Using the puzzles from MK, we created a dataset, dubbed SMART-840, consisting of 840 problems from years 2020-2024. With our dataset, we analyze LVLMs power on mathematical reasoning; their responses on our puzzles offer a direct way to compare against that of children. Our results show that modern LVLMs do demonstrate increasingly powerful reasoning skills in solving problems for higher grades, but lack the foundations to correctly answer problems designed for younger children. Further analysis shows that there is no significant correlation between the reasoning capabilities of AI models and that of young children, and their capabilities appear to be based on a different type of reasoning than the cumulative knowledge that underlies children's mathematics and logic skills.
G-RepsNet: A Fast and General Construction of Equivariant Networks for Arbitrary Matrix Groups
Basu, Sourya, Lohit, Suhas, Brand, Matthew
Group equivariance is a strong inductive bias useful in a wide range of deep learning tasks. However, constructing efficient equivariant networks for general groups and domains is difficult. Recent work by Finzi et al. (2021) directly solves the equivariance constraint for arbitrary matrix groups to obtain equivariant MLPs (EMLPs). But this method does not scale well and scaling is crucial in deep learning. Here, we introduce Group Representation Networks (G-RepsNets), a lightweight equivariant network for arbitrary matrix groups with features represented using tensor polynomials. The key intuition for our design is that using tensor representations in the hidden layers of a neural network along with simple inexpensive tensor operations can lead to expressive universal equivariant networks. We find G-RepsNet to be competitive to EMLP on several tasks with group symmetries such as O(5), O(1, 3), and O(3) with scalars, vectors, and second-order tensors as data types. On image classification tasks, we find that G-RepsNet using second-order representations is competitive and often even outperforms sophisticated state-of-the-art equivariant models such as GCNNs (Cohen & Welling, 2016a) and E(2)-CNNs (Weiler & Cesa, 2019). To further illustrate the generality of our approach, we show that G-RepsNet is competitive to G-FNO (Helwig et al., 2023) and EGNN (Satorras et al., 2021) on N-body predictions and solving PDEs, respectively, while being efficient.
Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional Image Synthesis
Nair, Nithin Gopalakrishnan, Cherian, Anoop, Lohit, Suhas, Wang, Ye, Koike-Akino, Toshiaki, Patel, Vishal M., Marks, Tim K.
Conditional generative models typically demand large annotated training sets to achieve high-quality synthesis. As a result, there has been significant interest in designing models that perform plug-and-play generation, i.e., to use a predefined or pretrained model, which is not explicitly trained on the generative task, to guide the generative process (e.g., using language). However, such guidance is typically useful only towards synthesizing high-level semantics rather than editing fine-grained details as in image-to-image translation tasks. To this end, and capitalizing on the powerful fine-grained generative control offered by the recent diffusion-based generative models, we introduce Steered Diffusion, a generalized framework for photorealistic zero-shot conditional image generation using a diffusion model trained for unconditional generation. The key idea is to steer the image generation of the diffusion model at inference time via designing a loss using a pre-trained inverse model that characterizes the conditional task. This loss modulates the sampling trajectory of the diffusion process. Our framework allows for easy incorporation of multiple conditions during inference. We present experiments using steered diffusion on several tasks including inpainting, colorization, text-guided semantic editing, and image super-resolution. Our results demonstrate clear qualitative and quantitative improvements over state-of-the-art diffusion-based plug-and-play models while adding negligible additional computational cost.
Tensor Factorization for Leveraging Cross-Modal Knowledge in Data-Constrained Infrared Object Detection
Sharma, Manish, Chatterjee, Moitreya, Peng, Kuan-Chuan, Lohit, Suhas, Jones, Michael
The primary bottleneck towards obtaining good recognition performance in IR images is the lack of sufficient labeled training data, owing to the cost of acquiring such data. Realizing that object detection methods for the RGB modality are quite robust (at least for some commonplace classes, like person, car, etc.), thanks to the giant training sets that exist, in this work we seek to leverage cues from the RGB modality to scale object detectors to the IR modality, while preserving model performance in the RGB modality. At the core of our method, is a novel tensor decomposition method called TensorFact which splits the convolution kernels of a layer of a Convolutional Neural Network (CNN) into low-rank factor matrices, with fewer parameters than the original CNN. We first pretrain these factor matrices on the RGB modality, for which plenty of training data are assumed to exist and then augment only a few trainable parameters for training on the IR modality to avoid over-fitting, while encouraging them to capture complementary cues from those trained only on the RGB modality. We validate our approach empirically by first assessing how well our TensorFact decomposed network performs at the task of detecting objects in RGB images vis-a-vis the original network and then look at how well it adapts to IR images of the FLIR ADAS v1 dataset. For the latter, we train models under scenarios that pose challenges stemming from data paucity. From the experiments, we observe that: (i) TensorFact shows performance gains on RGB images; (ii) further, this pre-trained model, when fine-tuned, outperforms a standard state-of-the-art object detector on the FLIR ADAS v1 dataset by about 4% in terms of mAP 50 score.
Are Deep Neural Networks SMARTer than Second Graders?
Cherian, Anoop, Peng, Kuan-Chuan, Lohit, Suhas, Smith, Kevin A., Tenenbaum, Joshua B.
Recent times have witnessed an increasing number of applications of deep neural networks towards solving tasks that require superior cognitive abilities, e.g., playing Go, generating art, ChatGPT, etc. Such a dramatic progress raises the question: how generalizable are neural networks in solving problems that demand broad skills? To answer this question, we propose SMART: a Simple Multimodal Algorithmic Reasoning Task and the associated SMART-101 dataset, for evaluating the abstraction, deduction, and generalization abilities of neural networks in solving visuo-linguistic puzzles designed specifically for children in the 6--8 age group. Our dataset consists of 101 unique puzzles; each puzzle comprises a picture and a question, and their solution needs a mix of several elementary skills, including arithmetic, algebra, and spatial reasoning, among others. To scale our dataset towards training deep neural networks, we programmatically generate entirely new instances for each puzzle, while retaining their solution algorithm. To benchmark performances on SMART-101, we propose a vision and language meta-learning model using varied state-of-the-art backbones. Our experiments reveal that while powerful deep models offer reasonable performances on puzzles in a supervised setting, they are not better than random accuracy when analyzed for generalization. We also evaluate the recent ChatGPT and other large language models on a subset of SMART-101 and find that while these models show convincing reasoning abilities, the answers are often incorrect.
Learning Partial Equivariances from Data
Romero, David W., Lohit, Suhas
Group Convolutional Neural Networks (G-CNNs) constrain learned features to respect the symmetries in the selected group, and lead to better generalization when these symmetries appear in the data. If this is not the case, however, equivariance leads to overly constrained models and worse performance. Frequently, transformations occurring in data can be better represented by a subset of a group than by a group as a whole, e.g., rotations in $[-90^{\circ}, 90^{\circ}]$. In such cases, a model that respects equivariance $\textit{partially}$ is better suited to represent the data. In addition, relevant transformations may differ for low and high-level features. For instance, full rotation equivariance is useful to describe edge orientations in a face, but partial rotation equivariance is better suited to describe face poses relative to the camera. In other words, the optimal level of equivariance may differ per layer. In this work, we introduce $\textit{Partial G-CNNs}$: G-CNNs able to learn layer-wise levels of partial and full equivariance to discrete, continuous groups and combinations thereof as part of training. Partial G-CNNs retain full equivariance when beneficial, e.g., for rotated MNIST, but adjust it whenever it becomes harmful, e.g., for classification of 6 / 9 digits or natural images. We empirically show that partial G-CNNs pair G-CNNs when full equivariance is advantageous, and outperform them otherwise.
Knowledge Distillation Thrives on Data Augmentation
Wang, Huan, Lohit, Suhas, Jones, Michael, Fu, Yun
Knowledge distillation (KD) is a general deep neural network training framework that uses a teacher model to guide a student model. Many works have explored the rationale for its success, however, its interplay with data augmentation (DA) has not been well recognized so far. In this paper, we are motivated by an interesting observation in classification: KD loss can benefit from extended training iterations while the cross-entropy loss does not. We show this disparity arises because of data augmentation: KD loss can tap into the extra information from different input views brought by DA. By this explanation, we propose to enhance KD via a stronger data augmentation scheme (e.g., mixup, CutMix). Furthermore, an even stronger new DA approach is developed specifically for KD based on the idea of active learning. The findings and merits of the proposed method are validated by extensive experiments on CIFAR-100, Tiny ImageNet, and ImageNet datasets. We can achieve improved performance simply by using the original KD loss combined with stronger augmentation schemes, compared to existing state-of-the-art methods, which employ more advanced distillation losses. In addition, when our approaches are combined with more advanced distillation losses, we can advance the state-of-the-art performance even more. On top of the encouraging performance, this paper also sheds some light on explaining the success of knowledge distillation. The discovered interplay between KD and DA may inspire more advanced KD algorithms.
Multi-head Knowledge Distillation for Model Compression
Wang, Huan, Lohit, Suhas, Jones, Michael, Fu, Yun
Several methods of knowledge distillation have been developed for neural network compression. While they all use the KL divergence loss to align the soft outputs of the student model more closely with that of the teacher, the various methods differ in how the intermediate features of the student are encouraged to match those of the teacher. In this paper, we propose a simple-to-implement method using auxiliary classifiers at intermediate layers for matching features, which we refer to as multi-head knowledge distillation (MHKD). We add loss terms for training the student that measure the dissimilarity between student and teacher outputs of the auxiliary classifiers. At the same time, the proposed method also provides a natural way to measure differences at the intermediate layers even though the dimensions of the internal teacher and student features may be different. Through several experiments in image classification on multiple datasets we show that the proposed method outperforms prior relevant approaches presented in the literature.
CS-VQA: Visual Question Answering with Compressively Sensed Images
Huang, Li-Chi, Kulkarni, Kuldeep, Jha, Anik, Lohit, Suhas, Jayasuriya, Suren, Turaga, Pavan
Visual Question Answering (VQA) is a complex semantic task requiring both natural language processing and visual recognition. In this paper, we explore whether VQA is solvable when images are captured in a sub-Nyquist compressive paradigm. We develop a series of deep-network architectures that exploit available compressive data to increasing degrees of accuracy, and show that VQA is indeed solvable in the compressed domain. Our results show that there is nominal degradation in VQA performance when using compressive measurements, but that accuracy can be recovered when VQA pipelines are used in conjunction with state-of-the-art deep neural networks for CS reconstruction. The results presented yield important implications for resource-constrained VQA applications.