Goto

Collaborating Authors

 Loáiciga, Sharid


Coreference as an indicator of context scope in multimodal narrative

arXiv.org Artificial Intelligence

We demonstrate that large multimodal language models differ substantially from humans in the distribution of coreferential expressions in a visual storytelling task. We introduce a number of metrics to quantify the characteristics of coreferential patterns in both human- and machine-written texts. Humans distribute coreferential expressions in a way that maintains consistency across texts and images, interleaving references to different entities in a highly varied way. Machines are less able to track mixed references, despite achieving perceived improvements in generation quality.


Understanding and Analyzing Model Robustness and Knowledge-Transfer in Multilingual Neural Machine Translation using TX-Ray

arXiv.org Artificial Intelligence

Neural networks have demonstrated significant advancements in Neural Machine Translation (NMT) compared to conventional phrase-based approaches. However, Multilingual Neural Machine Translation (MNMT) in extremely low-resource settings remains underexplored. This research investigates how knowledge transfer across languages can enhance MNMT in such scenarios. Using the Tatoeba translation challenge dataset from Helsinki NLP, we perform English-German, English-French, and English-Spanish translations, leveraging minimal parallel data to establish cross-lingual mappings. Unlike conventional methods relying on extensive pre-training for specific language pairs, we pre-train our model on English-English translations, setting English as the source language for all tasks. The model is fine-tuned on target language pairs using joint multi-task and sequential transfer learning strategies. Our work addresses three key questions: (1) How can knowledge transfer across languages improve MNMT in extremely low-resource scenarios? (2) How does pruning neuron knowledge affect model generalization, robustness, and catastrophic forgetting? (3) How can TX-Ray interpret and quantify knowledge transfer in trained models? Evaluation using BLEU-4 scores demonstrates that sequential transfer learning outperforms baselines on a 40k parallel sentence corpus, showcasing its efficacy. However, pruning neuron knowledge degrades performance, increases catastrophic forgetting, and fails to improve robustness or generalization. Our findings provide valuable insights into the potential and limitations of knowledge transfer and pruning in MNMT for extremely low-resource settings.


A surprisal oracle for when every layer counts

arXiv.org Artificial Intelligence

Active Curriculum Language Modeling (ACLM; Hong et al., 2023) is a learner directed approach to training a language model. We proposed the original version of this process in our submission to the BabyLM 2023 task, and now we propose an updated ACLM process for the BabyLM 2024 task. ACLM involves an iteratively- and dynamically-constructed curriculum informed over the training process by a model of uncertainty; other training items that are similarly uncertain to a least certain candidate item are prioritized. Our new process improves the similarity model so that it is more dynamic, and we run ACLM over the most successful model from the BabyLM 2023 task: ELC-BERT (Charpentier and Samuel, 2023). We find that while our models underperform on fine-grained grammatical inferences, they outperform the BabyLM 2024 official base-lines on common-sense and world-knowledge tasks. We make our code available at https: //github.com/asayeed/ActiveBaby.