Livieri, Giulia
Low-dimensional approximations of the conditional law of Volterra processes: a non-positive curvature approach
Arabpour, Reza, Armstrong, John, Galimberti, Luca, Kratsios, Anastasis, Livieri, Giulia
Predicting the conditional evolution of Volterra processes with stochastic volatility is a crucial challenge in mathematical finance. While deep neural network models offer promise in approximating the conditional law of such processes, their effectiveness is hindered by the curse of dimensionality caused by the infinite dimensionality and non-smooth nature of these problems. To address this, we propose a two-step solution. Firstly, we develop a stable dimension reduction technique, projecting the law of a reasonably broad class of Volterra process onto a low-dimensional statistical manifold of non-positive sectional curvature. Next, we introduce a sequentially deep learning model tailored to the manifold's geometry, which we show can approximate the projected conditional law of the Volterra process. Our model leverages an auxiliary hypernetwork to dynamically update its internal parameters, allowing it to encode non-stationary dynamics of the Volterra process, and it can be interpreted as a gating mechanism in a mixture of expert models where each expert is specialized at a specific point in time. Our hypernetwork further allows us to achieve approximation rates that would seemingly only be possible with very large networks.
Designing Universal Causal Deep Learning Models: The Case of Infinite-Dimensional Dynamical Systems from Stochastic Analysis
Galimberti, Luca, Kratsios, Anastasis, Livieri, Giulia
Causal operators (CO), such as various solution operators to stochastic differential equations, play a central role in contemporary stochastic analysis; however, there is still no canonical framework for designing Deep Learning (DL) models capable of approximating COs. This paper proposes a "geometry-aware'" solution to this open problem by introducing a DL model-design framework that takes suitable infinite-dimensional linear metric spaces as inputs and returns a universal sequential DL model adapted to these linear geometries. We call these models Causal Neural Operators (CNOs). Our main result states that the models produced by our framework can uniformly approximate on compact sets and across arbitrarily finite-time horizons H\"older or smooth trace class operators, which causally map sequences between given linear metric spaces. Our analysis uncovers new quantitative relationships on the latent state-space dimension of CNOs which even have new implications for (classical) finite-dimensional Recurrent Neural Networks (RNNs). We find that a linear increase of the CNO's (or RNN's) latent parameter space's dimension and of its width, and a logarithmic increase of its depth imply an exponential increase in the number of time steps for which its approximation remains valid. A direct consequence of our analysis shows that RNNs can approximate causal functions using exponentially fewer parameters than ReLU networks.
One-Shot Learning of Stochastic Differential Equations with Data Adapted Kernels
Darcy, Matthieu, Hamzi, Boumediene, Livieri, Giulia, Owhadi, Houman, Tavallali, Peyman
We consider the problem of learning Stochastic Differential Equations of the form $dX_t = f(X_t)dt+\sigma(X_t)dW_t $ from one sample trajectory. This problem is more challenging than learning deterministic dynamical systems because one sample trajectory only provides indirect information on the unknown functions $f$, $\sigma$, and stochastic process $dW_t$ representing the drift, the diffusion, and the stochastic forcing terms, respectively. We propose a method that combines Computational Graph Completion and data adapted kernels learned via a new variant of cross validation. Our approach can be decomposed as follows: (1) Represent the time-increment map $X_t \rightarrow X_{t+dt}$ as a Computational Graph in which $f$, $\sigma$ and $dW_t$ appear as unknown functions and random variables. (2) Complete the graph (approximate unknown functions and random variables) via Maximum a Posteriori Estimation (given the data) with Gaussian Process (GP) priors on the unknown functions. (3) Learn the covariance functions (kernels) of the GP priors from data with randomized cross-validation. Numerical experiments illustrate the efficacy, robustness, and scope of our method.