Goto

Collaborating Authors

 Liu, Zhong


Graph-attention-based Casual Discovery with Trust Region-navigated Clipping Policy Optimization

arXiv.org Artificial Intelligence

In many domains of empirical sciences, discovering the causal structure within variables remains an indispensable task. Recently, to tackle with unoriented edges or latent assumptions violation suffered by conventional methods, researchers formulated a reinforcement learning (RL) procedure for causal discovery, and equipped REINFORCE algorithm to search for the best-rewarded directed acyclic graph. The two keys to the overall performance of the procedure are the robustness of RL methods and the efficient encoding of variables. However, on the one hand, REINFORCE is prone to local convergence and unstable performance during training. Neither trust region policy optimization, being computationally-expensive, nor proximal policy optimization (PPO), suffering from aggregate constraint deviation, is decent alternative for combinatory optimization problems with considerable individual subactions. We propose a trust region-navigated clipping policy optimization method for causal discovery that guarantees both better search efficiency and steadiness in policy optimization, in comparison with REINFORCE, PPO and our prioritized sampling-guided REINFORCE implementation. On the other hand, to boost the efficient encoding of variables, we propose a refined graph attention encoder called SDGAT that can grasp more feature information without priori neighbourhood information. With these improvements, the proposed method outperforms former RL method in both synthetic and benchmark datasets in terms of output results and optimization robustness.


A Survey of Event Causality Identification: Principles, Taxonomy, Challenges, and Assessment

arXiv.org Artificial Intelligence

Event Causality Identification (ECI) has become a crucial task in Natural Language Processing (NLP), aimed at automatically extracting causalities from textual data. In this survey, we systematically address the foundational principles, technical frameworks, and challenges of ECI, offering a comprehensive taxonomy to categorize and clarify current research methodologies, as well as a quantitative assessment of existing models. We first establish a conceptual framework for ECI, outlining key definitions, problem formulations, and evaluation standards. Our taxonomy classifies ECI methods according to the two primary tasks of sentence-level (SECI) and document-level (DECI) event causality identification. For SECI, we examine feature pattern-based matching, deep semantic encoding, causal knowledge pre-training and prompt-based fine-tuning, and external knowledge enhancement methods. For DECI, we highlight approaches focused on event graph reasoning and prompt-based techniques to address the complexity of cross-sentence causal inference. Additionally, we analyze the strengths, limitations, and open challenges of each approach. We further conduct an extensive quantitative evaluation of various ECI methods on two benchmark datasets. Finally, we explore future research directions, highlighting promising pathways to overcome current limitations and broaden ECI applications.


Transform then Explore: a Simple and Effective Technique for Exploratory Combinatorial Optimization with Reinforcement Learning

arXiv.org Artificial Intelligence

Many complex problems encountered in both production and daily life can be conceptualized as combinatorial optimization problems (COPs) over graphs. Recent years, reinforcement learning (RL) based models have emerged as a promising direction, which treat the COPs solving as a heuristic learning problem. However, current finite-horizon-MDP based RL models have inherent limitations. They are not allowed to explore adquately for improving solutions at test time, which may be necessary given the complexity of NP-hard optimization tasks. Some recent attempts solve this issue by focusing on reward design and state feature engineering, which are tedious and ad-hoc. In this work, we instead propose a much simpler but more effective technique, named gauge transformation (GT). The technique is originated from physics, but is very effective in enabling RL agents to explore to continuously improve the solutions during test. Morever, GT is very simple, which can be implemented with less than 10 lines of Python codes, and can be applied to a vast majority of RL models. Experimentally, we show that traditional RL models with GT technique produce the state-of-the-art performances on the MaxCut problem. Furthermore, since GT is independent of any RL models, it can be seamlessly integrated into various RL frameworks, paving the way of these models for more effective explorations in the solving of general COPs.


Conversational Crowdsensing: A Parallel Intelligence Powered Novel Sensing Approach

arXiv.org Artificial Intelligence

The transition from CPS-based Industry 4.0 to CPSS-based Industry 5.0 brings new requirements and opportunities to current sensing approaches, especially in light of recent progress in Chatbots and Large Language Models (LLMs). Therefore, the advancement of parallel intelligence-powered Crowdsensing Intelligence (CSI) is witnessed, which is currently advancing towards linguistic intelligence. In this paper, we propose a novel sensing paradigm, namely conversational crowdsensing, for Industry 5.0. It can alleviate workload and professional requirements of individuals and promote the organization and operation of diverse workforce, thereby facilitating faster response and wider popularization of crowdsensing systems. Specifically, we design the architecture of conversational crowdsensing to effectively organize three types of participants (biological, robotic, and digital) from diverse communities. Through three levels of effective conversation (i.e., inter-human, human-AI, and inter-AI), complex interactions and service functionalities of different workers can be achieved to accomplish various tasks across three sensing phases (i.e., requesting, scheduling, and executing). Moreover, we explore the foundational technologies for realizing conversational crowdsensing, encompassing LLM-based multi-agent systems, scenarios engineering and conversational human-AI cooperation. Finally, we present potential industrial applications of conversational crowdsensing and discuss its implications. We envision that conversations in natural language will become the primary communication channel during crowdsensing process, enabling richer information exchange and cooperative problem-solving among humans, robots, and AI.


Machine Learning for the Multi-Dimensional Bin Packing Problem: Literature Review and Empirical Evaluation

arXiv.org Artificial Intelligence

The Bin Packing Problem (BPP) is a well-established combinatorial optimization (CO) problem. Since it has many applications in our daily life, e.g. logistics and resource allocation, people are seeking efficient bin packing algorithms. On the other hand, researchers have been making constant advances in machine learning (ML), which is famous for its efficiency. In this article, we first formulate BPP, introducing its variants and practical constraints. Then, a comprehensive survey on ML for multi-dimensional BPP is provided. We further collect some public benchmarks of 3D BPP, and evaluate some online methods on the Cutting Stock Dataset. Finally, we share our perspective on challenges and future directions in BPP. To the best of our knowledge, this is the first systematic review of ML-related methods for BPP.


The Expressive Power of Graph Neural Networks: A Survey

arXiv.org Artificial Intelligence

Graph neural networks (GNNs) are effective machine learning models for many graph-related applications. Despite their empirical success, many research efforts focus on the theoretical limitations of GNNs, i.e., the GNNs expressive power. Early works in this domain mainly focus on studying the graph isomorphism recognition ability of GNNs, and recent works try to leverage the properties such as subgraph counting and connectivity learning to characterize the expressive power of GNNs, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for models for enhancing expressive power under different forms of definition. Concretely, the models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.


Inductive Meta-path Learning for Schema-complex Heterogeneous Information Networks

arXiv.org Artificial Intelligence

Heterogeneous Information Networks (HINs) are information networks with multiple types of nodes and edges. The concept of meta-path, i.e., a sequence of entity types and relation types connecting two entities, is proposed to provide the meta-level explainable semantics for various HIN tasks. Traditionally, meta-paths are primarily used for schema-simple HINs, e.g., bibliographic networks with only a few entity types, where meta-paths are often enumerated with domain knowledge. However, the adoption of meta-paths for schema-complex HINs, such as knowledge bases (KBs) with hundreds of entity and relation types, has been limited due to the computational complexity associated with meta-path enumeration. Additionally, effectively assessing meta-paths requires enumerating relevant path instances, which adds further complexity to the meta-path learning process. To address these challenges, we propose SchemaWalk, an inductive meta-path learning framework for schema-complex HINs. We represent meta-paths with schema-level representations to support the learning of the scores of meta-paths for varying relations, mitigating the need of exhaustive path instance enumeration for each relation. Further, we design a reinforcement-learning based path-finding agent, which directly navigates the network schema (i.e., schema graph) to learn policies for establishing meta-paths with high coverage and confidence for multiple relations. Extensive experiments on real data sets demonstrate the effectiveness of our proposed paradigm.


Learning to Identify High Betweenness Centrality Nodes from Scratch: A Novel Graph Neural Network Approach

arXiv.org Machine Learning

Betweenness centrality (BC) is one of the most used centrality measures for network analysis, which seeks to describe the importance of nodes in a network in terms of the fraction of shortest paths that pass through them. It is key to many valuable applications, including community detection and network dismantling. Computing BC scores on large networks is computationally challenging due to high time complexity. Many approximation algorithms have been proposed to speed up the estimation of BC, which are mainly sampling-based. However, these methods are still prone to considerable execution time on large-scale networks, and their results are often exacerbated when small changes happen to the network structures. In this paper, we focus on identifying nodes with high BC in a graph, since many application scenarios are built upon retrieving nodes with top-k BC. Different from previous heuristic methods, we turn this task into a learning problem and design an encoder-decoder based framework to resolve the problem. More specifcally, the encoder leverages the network structure to encode each node into an embedding vector, which captures the important structural information of the node. The decoder transforms the embedding vector for each node into a scalar, which captures the relative rank of this node in terms of BC. We use the pairwise ranking loss to train the model to identify the orders of nodes regarding their BC. By training on small-scale networks, the learned model is capable of assigning relative BC scores to nodes for any unseen networks, and thus identifying the highly-ranked nodes. Comprehensive experiments on both synthetic and real-world networks demonstrate that, compared to representative baselines, our model drastically speeds up the prediction without noticeable sacrifce in accuracy, and outperforms the state-of-the-art by accuracy on several large real-world networks.


VMAV-C: A Deep Attention-based Reinforcement Learning Algorithm for Model-based Control

arXiv.org Artificial Intelligence

Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to universal complex tasks. Among them, the low efficiency of data utilization in model-free reinforcement algorithms is of great concern. In contrast, the model-based reinforcement learning algorithms can reveal underlying dynamics in learning environments and seldom suffer the data utilization problem. To address the problem, a model-based reinforcement learning algorithm with attention mechanism embedded is proposed as an extension of World Models in this paper. We learn the environment model through Mixture Density Network Recurrent Network(MDN-RNN) for agents to interact, with combinations of variational auto-encoder(VAE) and attention incorporated in state value estimates during the process of learning policy. In this way, agent can learn optimal policies through less interactions with actual environment, and final experiments demonstrate the effectiveness of our model in control problem.