Liu, Zhiyong
AIGC Empowering Telecom Sector White Paper_chinese
Ouyang, Ye, Zhang, Yaqin, Ye, Xiaozhou, Liu, Yunxin, Song, Yong, Liu, Yang, Bian, Sen, Liu, Zhiyong
In the global craze of GPT, people have deeply realized that AI, as a transformative technology and key force in economic and social development, will bring great leaps and breakthroughs to the global industry and profoundly influence the future world competition pattern. As the builder and operator of information and communication infrastructure, the telecom sector provides infrastructure support for the development of AI, and even takes the lead in the implementation of AI applications. How to enable the application of AIGC (GPT) and implement AIGC in the telecom sector are questions that telecom practitioners must ponder and answer. Through the study of GPT, a typical representative of AIGC, the authors have analyzed how GPT empowers the telecom sector in the form of scenarios, discussed the gap between the current GPT general model and telecom services, proposed for the first time a Telco Augmented Cognition capability system, provided answers to how to construct a telecom service GPT in the telecom sector, and carried out various practices. Our counterparts in the industry are expected to focus on collaborative innovation around telecom and AI, build an open and shared innovation ecosystem, promote the deep integration of AI and telecom sector, and accelerate the construction of next-generation information infrastructure, in an effort to facilitate the digital transformation of the economy and society.
Unseen Object Instance Segmentation with Fully Test-time RGB-D Embeddings Adaptation
Zhang, Lu, Zhang, Siqi, Yang, Xu, Qiao, Hong, Liu, Zhiyong
Segmenting unseen objects is a crucial ability for the robot since it may encounter new environments during the operation. Recently, a popular solution is leveraging RGB-D features of large-scale synthetic data and directly applying the model to unseen real-world scenarios. However, the domain shift caused by the sim2real gap is inevitable, posing a crucial challenge to the segmentation model. In this paper, we emphasize the adaptation process across sim2real domains and model it as a learning problem on the BatchNorm parameters of a simulation-trained model. Specifically, we propose a novel non-parametric entropy objective, which formulates the learning objective for the test-time adaptation in an open-world manner. Then, a cross-modality knowledge distillation objective is further designed to encourage the test-time knowledge transfer for feature enhancement. Our approach can be efficiently implemented with only test images, without requiring annotations or revisiting the large-scale synthetic training data. Besides significant time savings, the proposed method consistently improves segmentation results on the overlap and boundary metrics, achieving state-of-the-art performance on unseen object instance segmentation.
Zero-shot object goal visual navigation
Zhao, Qianfan, Zhang, Lu, He, Bin, Qiao, Hong, Liu, Zhiyong
Object goal visual navigation is a challenging task that aims to guide a robot to find the target object based on its visual observation, and the target is limited to the classes pre-defined in the training stage. However, in real households, there may exist numerous target classes that the robot needs to deal with, and it is hard for all of these classes to be contained in the training stage. To address this challenge, we study the zero-shot object goal visual navigation task, which aims at guiding robots to find targets belonging to novel classes without any training samples. To this end, we also propose a novel zero-shot object navigation framework called semantic similarity network (SSNet). Our framework use the detection results and the cosine similarity between semantic word embeddings as input. Such type of input data has a weak correlation with classes and thus our framework has the ability to generalize the policy to novel classes. Extensive experiments on the AI2-THOR platform show that our model outperforms the baseline models in the zero-shot object navigation task, which proves the generalization ability of our model. Our code is available at: https://github.com/pioneer-innovation/Zero-Shot-Object-Navigation.