Goto

Collaborating Authors

 Liu, Zhixuan


Emergent Response Planning in LLM

arXiv.org Artificial Intelligence

In this work, we argue that large language models (LLMs), though trained to predict only the next token, exhibit emergent planning behaviors: $\textbf{their hidden representations encode future outputs beyond the next token}$. Through simple probing, we demonstrate that LLM prompt representations encode global attributes of their entire responses, including $\textit{structural attributes}$ (response length, reasoning steps), $\textit{content attributes}$ (character choices in storywriting, multiple-choice answers at the end of response), and $\textit{behavioral attributes}$ (answer confidence, factual consistency). In addition to identifying response planning, we explore how it scales with model size across tasks and how it evolves during generation. The findings that LLMs plan ahead for the future in their hidden representations suggests potential applications for improving transparency and generation control.


Inference-Time Language Model Alignment via Integrated Value Guidance

arXiv.org Artificial Intelligence

Large language models are typically fine-tuned to align with human preferences, but tuning large models is computationally intensive and complex. In this work, we introduce $\textit{Integrated Value Guidance}$ (IVG), a method that uses implicit and explicit value functions to guide language model decoding at token and chunk-level respectively, efficiently aligning large language models purely at inference time. This approach circumvents the complexities of direct fine-tuning and outperforms traditional methods. Empirically, we demonstrate the versatility of IVG across various tasks. In controlled sentiment generation and summarization tasks, our method significantly improves the alignment of large models using inference-time guidance from $\texttt{gpt2}$-based value functions. Moreover, in a more challenging instruction-following benchmark AlpacaEval 2.0, we show that both specifically tuned and off-the-shelf value functions greatly improve the length-controlled win rates of large models against $\texttt{gpt-4-turbo}$ (e.g., $19.51\% \rightarrow 26.51\%$ for $\texttt{Mistral-7B-Instruct-v0.2}$ and $25.58\% \rightarrow 33.75\%$ for $\texttt{Mixtral-8x7B-Instruct-v0.1}$ with Tulu guidance).


Weak-to-Strong Search: Align Large Language Models via Searching over Small Language Models

arXiv.org Artificial Intelligence

Large language models are usually fine-tuned to align with human preferences. However, fine-tuning a large language model can be challenging. In this work, we introduce weak-to-strong search, framing the alignment of a large language model as a test-time greedy search to maximize the log-likelihood difference between small tuned and untuned models while sampling from the frozen large model. This method serves both as (i) a compute-efficient model up-scaling strategy that avoids directly tuning the large model and as (ii) an instance of weak-to-strong generalization that enhances a strong model with weak test-time guidance. Empirically, we demonstrate the flexibility of weak-to-strong search across different tasks. In controlled-sentiment generation and summarization, we use tuned and untuned gpt2s to effectively improve the alignment of large models without additional training. Crucially, in a more difficult instruction-following benchmark, AlpacaEval 2.0, we show that reusing off-the-shelf small models (e.g., zephyr-7b-beta and its untuned version) can significantly improve the length-controlled win rates of both white-box and black-box large models against gpt-4-turbo (e.g., 34.4 37.9 for Llama-3-70B-Instruct and 16.0 20.1 for gpt-3.5-turbo-instruct),