Liu, Zhihua
DOR3D-Net: Dense Ordinal Regression Network for 3D Hand Pose Estimation
Mao, Yamin, Liu, Zhihua, Li, Weiming, Cho, SoonYong, Wang, Qiang, Hao, Xiaoshuai
Depth-based 3D hand pose estimation is an important but challenging research task in human-machine interaction community. Recently, dense regression methods have attracted increasing attention in 3D hand pose estimation task, which provide a low computational burden and high accuracy regression way by densely regressing hand joint offset maps. However, large-scale regression offset values are often affected by noise and outliers, leading to a significant drop in accuracy. To tackle this, we re-formulate 3D hand pose estimation as a dense ordinal regression problem and propose a novel Dense Ordinal Regression 3D Pose Network (DOR3D-Net). Specifically, we first decompose offset value regression into sub-tasks of binary classifications with ordinal constraints. Then, each binary classifier can predict the probability of a binary spatial relationship relative to joint, which is easier to train and yield much lower level of noise. The estimated hand joint positions are inferred by aggregating the ordinal regression results at local positions with a weighted sum. Furthermore, both joint regression loss and ordinal regression loss are used to train our DOR3D-Net in an end-to-end manner. Extensive experiments on public datasets (ICVL, MSRA, NYU and HANDS2017) show that our design provides significant improvements over SOTA methods.
TextFlint: Unified Multilingual Robustness Evaluation Toolkit for Natural Language Processing
Gui, Tao, Wang, Xiao, Zhang, Qi, Liu, Qin, Zou, Yicheng, Zhou, Xin, Zheng, Rui, Zhang, Chong, Wu, Qinzhuo, Ye, Jiacheng, Pang, Zexiong, Zhang, Yongxin, Li, Zhengyan, Ma, Ruotian, Fei, Zichu, Cai, Ruijian, Zhao, Jun, Hu, Xinwu, Yan, Zhiheng, Tan, Yiding, Hu, Yuan, Bian, Qiyuan, Liu, Zhihua, Zhu, Bolin, Qin, Shan, Xing, Xiaoyu, Fu, Jinlan, Zhang, Yue, Peng, Minlong, Zheng, Xiaoqing, Zhou, Yaqian, Wei, Zhongyu, Qiu, Xipeng, Huang, Xuanjing
Various robustness evaluation methodologies from different perspectives have been proposed for different natural language processing (NLP) tasks. These methods have often focused on either universal or task-specific generalization capabilities. In this work, we propose a multilingual robustness evaluation platform for NLP tasks (TextFlint) that incorporates universal text transformation, task-specific transformation, adversarial attack, subpopulation, and their combinations to provide comprehensive robustness analysis. TextFlint enables practitioners to automatically evaluate their models from all aspects or to customize their evaluations as desired with just a few lines of code. To guarantee user acceptability, all the text transformations are linguistically based, and we provide a human evaluation for each one. TextFlint generates complete analytical reports as well as targeted augmented data to address the shortcomings of the model's robustness. To validate TextFlint's utility, we performed large-scale empirical evaluations (over 67,000 evaluations) on state-of-the-art deep learning models, classic supervised methods, and real-world systems. Almost all models showed significant performance degradation, including a decline of more than 50% of BERT's prediction accuracy on tasks such as aspect-level sentiment classification, named entity recognition, and natural language inference. Therefore, we call for the robustness to be included in the model evaluation, so as to promote the healthy development of NLP technology.