Liu, Zhi-Ping
Practical quantum federated learning and its experimental demonstration
Liu, Zhi-Ping, Cao, Xiao-Yu, Liu, Hao-Wen, Sun, Xiao-Ran, Bao, Yu, Lu, Yu-Shuo, Yin, Hua-Lei, Chen, Zeng-Bing
Federated learning is essential for decentralized, privacy-preserving model training in the data-driven era. Quantum-enhanced federated learning leverages quantum resources to address privacy and scalability challenges, offering security and efficiency advantages beyond classical methods. However, practical and scalable frameworks addressing privacy concerns in the quantum computing era remain undeveloped. Here, we propose a practical quantum federated learning framework on quantum networks, utilizing distributed quantum secret keys to protect local model updates and enable secure aggregation with information-theoretic security. We experimentally validate our framework on a 4-client quantum network with a scalable structure. Extensive numerical experiments on both quantum and classical datasets show that adding a quantum client significantly enhances the trained global model's ability to classify multipartite entangled and non-stabilizer quantum datasets. Simulations further demonstrate scalability to 200 clients with classical models trained on the MNIST dataset, reducing communication costs by $75\%$ through advanced model compression techniques and achieving rapid training convergence. Our work provides critical insights for building scalable, efficient, and quantum-secure machine learning systems for the coming quantum internet era.
Quantum Neural Network for Quantum Neural Computing
Zhou, Min-Gang, Liu, Zhi-Ping, Yin, Hua-Lei, Li, Chen-Long, Xu, Tong-Kai, Chen, Zeng-Bing
Neural networks have achieved impressive breakthroughs in both industry and academia. How to effectively develop neural networks on quantum computing devices is a challenging open problem. Here, we propose a new quantum neural network model for quantum neural computing using (classically-controlled) single-qubit operations and measurements on real-world quantum systems with naturally occurring environment-induced decoherence, which greatly reduces the difficulties of physical implementations. Our model circumvents the problem that the state-space size grows exponentially with the number of neurons, thereby greatly reducing memory requirements and allowing for fast optimization with traditional optimization algorithms. We benchmark our model for handwritten digit recognition and other nonlinear classification tasks. The results show that our model has an amazing nonlinear classification ability and robustness to noise. Furthermore, our model allows quantum computing to be applied in a wider context and inspires the earlier development of a quantum neural computer than standard quantum computers.