Liu, Yueqian
Learning Generalizable Policy for Obstacle-Aware Autonomous Drone Racing
Liu, Yueqian
Autonomous drone racing has gained attention for its potential to push the boundaries of drone navigation technologies. While much of the existing research focuses on racing in obstacle-free environments, few studies have addressed the complexities of obstacle-aware racing, and approaches presented in these studies often suffer from overfitting, with learned policies generalizing poorly to new environments. This work addresses the challenge of developing a generalizable obstacle-aware drone racing policy using deep reinforcement learning. We propose applying domain randomization on racing tracks and obstacle configurations before every rollout, combined with parallel experience collection in randomized environments to achieve the goal. The proposed randomization strategy is shown to be effective through simulated experiments where drones reach speeds of up to 70 km/h, racing in unseen cluttered environments. This study serves as a stepping stone toward learning robust policies for obstacle-aware drone racing and general-purpose drone navigation in cluttered environments. Code is available at https://github.com/ErcBunny/IsaacGymEnvs.
Generating 6-D Trajectories for Omnidirectional Multirotor Aerial Vehicles in Cluttered Environments
Liu, Peiyan, Shen, Yuanzhe, Liu, Yueqian, Quan, Fengyu, Wang, Can, Chen, Haoyao
As fully-actuated systems, omnidirectional multirotor aerial vehicles (OMAVs) have more flexible maneuverability and advantages in aggressive flight in cluttered environments than traditional underactuated MAVs. %Due to the high dimensionality of configuration space, making the designed trajectory generation algorithm efficient is challenging. This paper aims to achieve safe flight of OMAVs in cluttered environments. Considering existing static obstacles, an efficient optimization-based framework is proposed to generate 6-D $SE(3)$ trajectories for OMAVs. Given the kinodynamic constraints and the 3D collision-free region represented by a series of intersecting convex polyhedra, the proposed method finally generates a safe and dynamically feasible 6-D trajectory. First, we parameterize the vehicle's attitude into a free 3D vector using stereographic projection to eliminate the constraints inherent in the $SO(3)$ manifold, while the complete $SE(3)$ trajectory is represented as a 6-D polynomial in time without inherent constraints. The vehicle's shape is modeled as a cuboid attached to the body frame to achieve whole-body collision evaluation. Then, we formulate the origin trajectory generation problem as a constrained optimization problem. The original constrained problem is finally transformed into an unconstrained one that can be solved efficiently. To verify the proposed framework's performance, simulations and real-world experiments based on a tilt-rotor hexarotor aerial vehicle are carried out.
RGB-D Inertial Odometry for a Resource-Restricted Robot in Dynamic Environments
Liu, Jianheng, Li, Xuanfu, Liu, Yueqian, Chen, Haoyao
Current simultaneous localization and mapping (SLAM) algorithms perform well in static environments but easily fail in dynamic environments. Recent works introduce deep learning-based semantic information to SLAM systems to reduce the influence of dynamic objects. However, it is still challenging to apply a robust localization in dynamic environments for resource-restricted robots. This paper proposes a real-time RGB-D inertial odometry system for resource-restricted robots in dynamic environments named Dynamic-VINS. Three main threads run in parallel: object detection, feature tracking, and state optimization. The proposed Dynamic-VINS combines object detection and depth information for dynamic feature recognition and achieves performance comparable to semantic segmentation. Dynamic-VINS adopts grid-based feature detection and proposes a fast and efficient method to extract high-quality FAST feature points. IMU is applied to predict motion for feature tracking and moving consistency check. The proposed method is evaluated on both public datasets and real-world applications and shows competitive localization accuracy and robustness in dynamic environments. Yet, to the best of our knowledge, it is the best-performance real-time RGB-D inertial odometry for resource-restricted platforms in dynamic environments for now. The proposed system is open source at: https://github.com/HITSZ-NRSL/Dynamic-VINS.git