Liu, Yong
Revisiting Weak-to-Strong Generalization in Theory and Practice: Reverse KL vs. Forward KL
Yao, Wei, Yang, Wenkai, Wang, Ziqiao, Lin, Yankai, Liu, Yong
As large language models advance toward superhuman performance, ensuring their alignment with human values and abilities grows increasingly complex. Weak-to-strong generalization offers a promising approach by leveraging predictions from weaker models to guide stronger systems, but its effectiveness could be constrained by the inherent noise and inaccuracies in these weak predictions. To address this, we propose a theoretically grounded approach that replaces forward KL divergence-whose mass-covering behavior risks overfitting to imperfect weak signals-with reverse KL divergence. Reverse KL divergence's zero-forcing effect prioritizes high-confidence predictions, effectively mitigating the influence of unreliable weak supervision. Theoretically, we extend existing bounds and derive tighter lower bounds for both forward and reverse KL divergence, establishing that reverse KL achieves at least comparable guarantees to forward KL. Notably, when a sufficiently pre-trained strong model is fine-tuned on the last layer, reverse KL uniquely guarantees that it outperforms its weak supervisor by the magnitude of their disagreement-a guarantee that forward KL cannot provide. Empirically, we demonstrate that reverse KL and reverse cross-entropy enable strong models to consistently outperform those trained with forward KL and standard cross-entropy across most settings, highlighting the practical advantages of these reverse losses.
AiRacleX: Automated Detection of Price Oracle Manipulations via LLM-Driven Knowledge Mining and Prompt Generation
Gao, Bo, Wang, Yuan, Wei, Qingsong, Liu, Yong, Goh, Rick Siow Mong, Lo, David
Decentralized finance (DeFi) applications depend on accurate price oracles to ensure secure transactions, yet these oracles are highly vulnerable to manipulation, enabling attackers to exploit smart contract vulnerabilities for unfair asset valuation and financial gain. Detecting such manipulations traditionally relies on the manual effort of experienced experts, presenting significant challenges. In this paper, we propose a novel LLM-driven framework that automates the detection of price oracle manipulations by leveraging the complementary strengths of different LLM models (LLMs). Our approach begins with domain-specific knowledge extraction, where an LLM model synthesizes precise insights about price oracle vulnerabilities from top-tier academic papers, eliminating the need for profound expertise from developers or auditors. This knowledge forms the foundation for a second LLM model to generate structured, context-aware chain of thought prompts, which guide a third LLM model in accurately identifying manipulation patterns in smart contracts. We validate the effectiveness of framework through experiments on 60 known vulnerabilities from 46 real-world DeFi attacks or projects spanning 2021 to 2023. The best performing combination of LLMs (Haiku-Haiku-4o-mini) identified by AiRacleX demonstrate a 2.58-times improvement in recall (0.667 vs 0.259) compared to the state-of-the-art tool GPTScan, while maintaining comparable precision. Furthermore, our framework demonstrates the feasibility of replacing commercial models with open-source alternatives, enhancing privacy and security for developers.
Unveiling the Mechanisms of Explicit CoT Training: How Chain-of-Thought Enhances Reasoning Generalization
Yao, Xinhao, Ren, Ruifeng, Liao, Yun, Liu, Yong
Training large language models (LLMs) with high-quality Chain-of-Thought (CoT) annotations has become a widely adopted strategy due to its significant enhancement of reasoning capabilities. To fully comprehend this approach, two questions naturally arise: (Q1) What advantages does training with CoT offer compared to training without CoT? (Q2) If there are advantages, what are the underlying mechanisms of explicit CoT training? Analyzing the advantages and mechanisms of CoT training is challenging due to the many factors involved. To address this, we conduct a detailed analysis using clear and controllable data distributions and, for the first time, reveal that CoT training offers the following advantages: (1) Training with CoT markedly improves reasoning generalization, extending it from in-distribution (ID) to both ID and out-of-distribution (OOD) scenarios, while also speeding up convergence; (2) Even when training with CoT includes a certain range of erroneous reasoning steps, it still enables the model to learn reasoning patterns, leading to systematic generalization. We further explore the underlying mechanisms from a circuit perspective: (1) The data distribution (e.g., ratio $\lambda$ and pattern) plays a crucial role in influencing the model's systematic generalization; (2) CoT training (with two-hop facts) internalizes reasoning into a two-stage generalizing circuit, where the number of stages corresponds to the explicit reasoning steps during training. Our findings elucidate the mechanisms underlying explicit CoT training and offer critical insights into tuning strategies for LLMs to achieve robust generalization.
Understanding the Capabilities and Limitations of Weak-to-Strong Generalization
Yao, Wei, Yang, Wenkai, Wang, Ziqiao, Lin, Yankai, Liu, Yong
Weak-to-strong generalization, where weakly supervised strong models outperform their weaker teachers, offers a promising approach to aligning superhuman models with human values. To deepen the understanding of this approach, we provide theoretical insights into its capabilities and limitations. First, in the classification setting, we establish upper and lower generalization error bounds for the strong model, identifying the primary limitations as stemming from the weak model's generalization error and the optimization objective itself. Additionally, we derive lower and upper bounds on the calibration error of the strong model. These theoretical bounds reveal two critical insights: (1) the weak model should demonstrate strong generalization performance and maintain well-calibrated predictions, and (2) the strong model's training process must strike a careful balance, as excessive optimization could undermine its generalization capability by over-relying on the weak supervision signals. Finally, in the regression setting, we extend the work of Charikar et al. (2024) to a loss function based on Kullback-Leibler (KL) divergence, offering guarantees that the strong student can outperform its weak teacher by at least the magnitude of their disagreement. We conduct sufficient experiments to validate our theory.
Sundial: A Family of Highly Capable Time Series Foundation Models
Liu, Yong, Qin, Guo, Shi, Zhiyuan, Chen, Zhi, Yang, Caiyin, Huang, Xiangdong, Wang, Jianmin, Long, Mingsheng
We introduce Sundial, a family of native, flexible, and scalable time series foundation models. To predict the next-patch's distribution, we propose a TimeFlow Loss based on flow-matching, which facilitates native pre-training of Transformers on time series without discrete tokenization. Conditioned on arbitrary-length time series, our model is pre-trained without specifying any prior distribution and can generate multiple probable predictions, achieving flexibility in representation learning beyond using parametric densities. Towards time series foundation models, we leverage minimal but crucial adaptations of Transformers and curate TimeBench with 1 trillion time points, comprising mostly real-world datasets and synthetic data. By mitigating mode collapse through TimeFlow Loss, we pre-train a family of Sundial models on TimeBench, which exhibit unprecedented model capacity and generalization performance on zero-shot forecasting. In addition to presenting good scaling behavior, Sundial achieves new state-of-the-art on both point forecasting and probabilistic forecasting benchmarks. We believe that Sundial's pioneering generative paradigm will facilitate a wide variety of forecasting scenarios.
Rethinking External Slow-Thinking: From Snowball Errors to Probability of Correct Reasoning
Gan, Zeyu, Liao, Yun, Liu, Yong
Test-time scaling, which is also often referred to as slow-thinking, has been demonstrated to enhance multi-step reasoning in large language models (LLMs). However, despite its widespread utilization, the mechanisms underlying slow-thinking methods remain poorly understood. This paper explores the mechanisms of external slow-thinking from a theoretical standpoint. We begin by examining the snowball error effect within the LLM reasoning process and connect it to the likelihood of correct reasoning using information theory. Building on this, we show that external slow-thinking methods can be interpreted as strategies to mitigate the error probability. We further provide a comparative analysis of popular external slow-thinking approaches, ranging from simple to complex, highlighting their differences and interrelationships. Our findings suggest that the efficacy of these methods is not primarily determined by the specific framework employed, and that expanding the search scope or the model's internal reasoning capacity may yield more sustained improvements in the long term. We open-source our code at https://github.com/ZyGan1999/Snowball-Errors-and-Probability.
FreEformer: Frequency Enhanced Transformer for Multivariate Time Series Forecasting
Yue, Wenzhen, Liu, Yong, Ying, Xianghua, Xing, Bowei, Guo, Ruohao, Shi, Ji
This paper presents \textbf{FreEformer}, a simple yet effective model that leverages a \textbf{Fre}quency \textbf{E}nhanced Trans\textbf{former} for multivariate time series forecasting. Our work is based on the assumption that the frequency spectrum provides a global perspective on the composition of series across various frequencies and is highly suitable for robust representation learning. Specifically, we first convert time series into the complex frequency domain using the Discrete Fourier Transform (DFT). The Transformer architecture is then applied to the frequency spectra to capture cross-variate dependencies, with the real and imaginary parts processed independently. However, we observe that the vanilla attention matrix exhibits a low-rank characteristic, thus limiting representation diversity. This could be attributed to the inherent sparsity of the frequency domain and the strong-value-focused nature of Softmax in vanilla attention. To address this, we enhance the vanilla attention mechanism by introducing an additional learnable matrix to the original attention matrix, followed by row-wise L1 normalization. Theoretical analysis~demonstrates that this enhanced attention mechanism improves both feature diversity and gradient flow. Extensive experiments demonstrate that FreEformer consistently outperforms state-of-the-art models on eighteen real-world benchmarks covering electricity, traffic, weather, healthcare and finance. Notably, the enhanced attention mechanism also consistently improves the performance of state-of-the-art Transformer-based forecasters.
Are Traditional Deep Learning Model Approaches as Effective as a Retinal-Specific Foundation Model for Ocular and Systemic Disease Detection?
Yew, Samantha Min Er, Lei, Xiaofeng, Goh, Jocelyn Hui Lin, Chen, Yibing, Srinivasan, Sahana, Chee, Miao-li, Pushpanathan, Krithi, Zou, Ke, Hou, Qingshan, Da Soh, Zhi, Xue, Cancan, Yu, Marco Chak Yan, Sabanayagam, Charumathi, Tai, E Shyong, Sim, Xueling, Wang, Yaxing, Jonas, Jost B., Nangia, Vinay, Yang, Gabriel Dawei, Ran, Emma Anran, Cheung, Carol Yim-Lui, Feng, Yangqin, Zhou, Jun, Goh, Rick Siow Mong, Zhou, Yukun, Keane, Pearse A., Liu, Yong, Cheng, Ching-Yu, Tham, Yih-Chung
Background: RETFound, a self-supervised, retina-specific foundation model (FM), showed potential in downstream applications. However, its comparative performance with traditional deep learning (DL) models remains incompletely understood. This study aimed to evaluate RETFound against three ImageNet-pretrained supervised DL models (ResNet50, ViT-base, SwinV2) in detecting ocular and systemic diseases. Methods: We fine-tuned/trained RETFound and three DL models on full datasets, 50%, 20%, and fixed sample sizes (400, 200, 100 images, with half comprising disease cases; for each DR severity class, 100 and 50 cases were used. Fine-tuned models were tested internally using the SEED (53,090 images) and APTOS-2019 (3,672 images) datasets and externally validated on population-based (BES, CIEMS, SP2, UKBB) and open-source datasets (ODIR-5k, PAPILA, GAMMA, IDRiD, MESSIDOR-2). Model performance was compared using area under the receiver operating characteristic curve (AUC) and Z-tests with Bonferroni correction (P<0.05/3). Interpretation: Traditional DL models are mostly comparable to RETFound for ocular disease detection with large datasets. However, RETFound is superior in systemic disease detection with smaller datasets. These findings offer valuable insights into the respective merits and limitation of traditional models and FMs.
A Survey on Multi-Turn Interaction Capabilities of Large Language Models
Zhang, Chen, Dai, Xinyi, Wu, Yaxiong, Yang, Qu, Wang, Yasheng, Tang, Ruiming, Liu, Yong
Multi-turn interaction in the dialogue system research refers to a system's ability to maintain context across multiple dialogue turns, enabling it to generate coherent and contextually relevant responses. Recent advancements in large language models (LLMs) have significantly expanded the scope of multi-turn interaction, moving beyond chatbots to enable more dynamic agentic interactions with users or environments. In this paper, we provide a focused review of the multi-turn capabilities of LLMs, which are critical for a wide range of downstream applications, including conversational search and recommendation, consultation services, and interactive tutoring. This survey explores four key aspects: (1) the core model capabilities that contribute to effective multi-turn interaction, (2) how multi-turn interaction is evaluated in current practice, (3) the general algorithms used to enhance multi-turn interaction, and (4) potential future directions for research in this field.
MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents
Dong, Kuicai, Chang, Yujing, Goh, Xin Deik, Li, Dexun, Tang, Ruiming, Liu, Yong
Multi-modal document retrieval is designed to identify and retrieve various forms of multi-modal content, such as figures, tables, charts, and layout information from extensive documents. Despite its significance, there is a notable lack of a robust benchmark to effectively evaluate the performance of systems in multi-modal document retrieval. To address this gap, this work introduces a new benchmark, named as MMDocIR, encompassing two distinct tasks: page-level and layout-level retrieval. The former focuses on localizing the most relevant pages within a long document, while the latter targets the detection of specific layouts, offering a more fine-grained granularity than whole-page analysis. A layout can refer to a variety of elements such as textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring expertly annotated labels for 1,685 questions and bootstrapped labels for 173,843 questions, making it a pivotal resource for advancing multi-modal document retrieval for both training and evaluation. Through rigorous experiments, we reveal that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR train set can effectively benefit the training process of multi-modal document retrieval and (iii) text retrievers leveraging on VLM-text perform much better than those using OCR-text. These findings underscores the potential advantages of integrating visual elements for multi-modal document retrieval.