Liu, Yong
Benchmarking LLMs in Recommendation Tasks: A Comparative Evaluation with Conventional Recommenders
Liu, Qijiong, Zhu, Jieming, Fan, Lu, Wang, Kun, Hu, Hengchang, Guo, Wei, Liu, Yong, Wu, Xiao-Ming
In recent years, integrating large language models (LLMs) into recommender systems has created new opportunities for improving recommendation quality. However, a comprehensive benchmark is needed to thoroughly evaluate and compare the recommendation capabilities of LLMs with traditional recommender systems. In this paper, we introduce RecBench, which systematically investigates various item representation forms (including unique identifier, text, semantic embedding, and semantic identifier) and evaluates two primary recommendation tasks, i.e., click-through rate prediction (CTR) and sequential recommendation (SeqRec). Our extensive experiments cover up to 17 large models and are conducted across five diverse datasets from fashion, news, video, books, and music domains. Our findings indicate that LLM-based recommenders outperform conventional recommenders, achieving up to a 5% AUC improvement in the CTR scenario and up to a 170% NDCG@10 improvement in the SeqRec scenario. However, these substantial performance gains come at the expense of significantly reduced inference efficiency, rendering the LLM-as-RS paradigm impractical for real-time recommendation environments. We aim for our findings to inspire future research, including recommendation-specific model acceleration methods. We will release our code, data, configurations, and platform to enable other researchers to reproduce and build upon our experimental results.
RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery
Gu, Hongchao, Li, Dexun, Dong, Kuicai, Zhang, Hao, Lv, Hang, Wang, Hao, Lian, Defu, Liu, Yong, Chen, Enhong
Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as direct generation and multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient retrieval-augmented long text generation framework. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (e.g. long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.
TimesBERT: A BERT-Style Foundation Model for Time Series Understanding
Zhang, Haoran, Liu, Yong, Qiu, Yunzhong, Liu, Haixuan, Pei, Zhongyi, Wang, Jianmin, Long, Mingsheng
Time series analysis is crucial in diverse scenarios. Beyond forecasting, considerable real-world tasks are categorized into classification, imputation, and anomaly detection, underscoring different capabilities termed time series understanding in this paper. While GPT-style models have been positioned as foundation models for time series forecasting, the BERT-style architecture, which has made significant advances in natural language understanding, has not been fully unlocked for time series understanding, possibly attributed to the undesirable dropout of essential elements of BERT. In this paper, inspired by the shared multi-granularity structure between multivariate time series and multisentence documents, we design TimesBERT to learn generic representations of time series including temporal patterns and variate-centric characteristics. In addition to a natural adaptation of masked modeling, we propose a parallel task of functional token prediction to embody vital multi-granularity structures. Our model is pre-trained on 260 billion time points across diverse domains. Leveraging multi-granularity representations, TimesBERT achieves state-of-the-art performance across four typical downstream understanding tasks, outperforming task-specific models and language pre-trained backbones, positioning it as a versatile foundation model for time series understanding.
Disentangling Feature Structure: A Mathematically Provable Two-Stage Training Dynamics in Transformers
Gong, Zixuan, Teng, Jiaye, Liu, Yong
Transformers may exhibit two-stage training dynamics during the real-world training process. For instance, when training GPT-2 on the Counterfact dataset, the answers progress from syntactically incorrect to syntactically correct to semantically correct. However, existing theoretical analyses hardly account for this two-stage phenomenon. In this paper, we theoretically demonstrate how such two-stage training dynamics occur in transformers. Specifically, we analyze the dynamics of transformers using feature learning techniques under in-context learning regimes, based on a disentangled two-type feature structure. Such disentanglement of feature structure is general in practice, e.g., natural languages contain syntax and semantics, and proteins contain primary and secondary structures. To our best known, this is the first rigorous result regarding a two-stage optimization process in transformers. Additionally, a corollary indicates that such a two-stage process is closely related to the spectral properties of the attention weights, which accords well with empirical findings.
Towards Auto-Regressive Next-Token Prediction: In-Context Learning Emerges from Generalization
Gong, Zixuan, Hu, Xiaolin, Tang, Huayi, Liu, Yong
Large language models (LLMs) have demonstrated remarkable in-context learning (ICL) abilities. However, existing theoretical analysis of ICL primarily exhibits two limitations: (a) Limited i.i.d. Setting. Most studies focus on supervised function learning tasks where prompts are constructed with i.i.d. input-label pairs. This i.i.d. assumption diverges significantly from real language learning scenarios where prompt tokens are interdependent. (b) Lack of Emergence Explanation. Most literature answers what ICL does from an implicit optimization perspective but falls short in elucidating how ICL emerges and the impact of pre-training phase on ICL. In our paper, to extend (a), we adopt a more practical paradigm, auto-regressive next-token prediction (AR-NTP), which closely aligns with the actual training of language models. Specifically, within AR-NTP, we emphasize prompt token-dependency, which involves predicting each subsequent token based on the preceding sequence. To address (b), we formalize a systematic pre-training and ICL framework, highlighting the layer-wise structure of sequences and topics, alongside a two-level expectation. In conclusion, we present data-dependent, topic-dependent and optimization-dependent PAC-Bayesian generalization bounds for pre-trained LLMs, investigating that ICL emerges from the generalization of sequences and topics. Our theory is supported by experiments on numerical linear dynamic systems, synthetic GINC and real-world language datasets.
AS-GCL: Asymmetric Spectral Augmentation on Graph Contrastive Learning
Liu, Ruyue, Yin, Rong, Liu, Yong, Hao, Xiaoshuai, Shi, Haichao, Ma, Can, Wang, Weiping
Graph Contrastive Learning (GCL) has emerged as the foremost approach for self-supervised learning on graph-structured data. GCL reduces reliance on labeled data by learning robust representations from various augmented views. However, existing GCL methods typically depend on consistent stochastic augmentations, which overlook their impact on the intrinsic structure of the spectral domain, thereby limiting the model's ability to generalize effectively. To address these limitations, we propose a novel paradigm called AS-GCL that incorporates asymmetric spectral augmentation for graph contrastive learning. A typical GCL framework consists of three key components: graph data augmentation, view encoding, and contrastive loss. Our method introduces significant enhancements to each of these components. Specifically, for data augmentation, we apply spectral-based augmentation to minimize spectral variations, strengthen structural invariance, and reduce noise. With respect to encoding, we employ parameter-sharing encoders with distinct diffusion operators to generate diverse, noise-resistant graph views. For contrastive loss, we introduce an upper-bound loss function that promotes generalization by maintaining a balanced distribution of intra- and inter-class distance. To our knowledge, we are the first to encode augmentation views of the spectral domain using asymmetric encoders. Extensive experiments on eight benchmark datasets across various node-level tasks demonstrate the advantages of the proposed method.
SPPD: Self-training with Process Preference Learning Using Dynamic Value Margin
Yi, Hao, Li, Qingyang, Hu, Yulan, Zhang, Fuzheng, Zhang, Di, Liu, Yong
Recently, enhancing the numerical and logical reasoning capability of Large Language Models (LLMs) has emerged as a research hotspot. Existing methods face several limitations: inference-phase techniques (e.g., Chain of Thoughts) rely on prompt selection and the pretrained knowledge; sentence-level Supervised Fine-Tuning (SFT) and Direct Preference Optimization (DPO) struggle with step-wise mathematical correctness and depend on stronger models distillation or human annotations; while Reinforcement Learning (RL) approaches incur high GPU memory costs and unstable training. To address these, we propose \textbf{S}elf-training framework integrating \textbf{P}rocess \textbf{P}reference learning using \textbf{D}ynamic value margin (SPPD). SPPD leverages a process-based Markov Decision Process (MDP) and Bellman optimality equation to derive \textbf{dynamic value margin} on step-level preference optimization, which employs tree-based self-sampling on model responses \textbf{without any distillation} from other models. Furthermore, we theoretically prove that SPPD is \textbf{equivalent to on-policy policy gradient methods} under reward constraints. Experiments on 7B-scale models demonstrate superior performance across in-domain and out-domain mathematical benchmarks. We open-source our code at \href{https://anonymous.4open.science/r/SSDPO-D-DCDD}{https://anonymous.4open.science/r/SPPD-DCDD}.
Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger
Li, Wenjun, Li, Dexun, Dong, Kuicai, Zhang, Cong, Zhang, Hao, Liu, Weiwen, Wang, Yasheng, Tang, Ruiming, Liu, Yong
Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or real-time data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, weather/map apps), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues:(1) increased delays due to unnecessary tool calls, and (2) potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, representing the model's awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Our experiments show that MeCo accurately detects LLMs' internal cognitive signals and significantly improves tool-use decision-making across multiple base models and benchmarks.
Coarse-to-Fine Process Reward Modeling for Mathematical Reasoning
Hu, Yulan, Chen, Ge, Zhao, Jinman, Ouyang, Sheng, Liu, Yong
The Process Reward Model (PRM) plays a crucial role in mathematical reasoning tasks, requiring high-quality supervised process data. However, we observe that reasoning steps generated by Large Language Models (LLMs) often fail to exhibit strictly incremental information, leading to redundancy that can hinder effective reasoning. To address this issue, we propose CFPRM, a simple yet effective coarse-to-fine strategy. Instead of focusing on the detection of redundant steps, our approach first establishes a coarse-grained window to merge adjacent reasoning steps into unified, holistic steps. The window size is then progressively reduced to extract fine-grained reasoning steps, enabling data collection at multiple granularities for training. By leveraging this hierarchical refinement process, CFPRM mitigates redundancy while preserving essential fine-grained knowledge. Extensive experiments on two reasoning datasets across three loss criteria validate the CFPRM's effectiveness and versatility.
Understanding Generalization in Transformers: Error Bounds and Training Dynamics Under Benign and Harmful Overfitting
Zhang, Yingying, Wu, Zhenyu, Li, Jian, Liu, Yong
Transformers serve as the foundational architecture for many successful large-scale models, demonstrating the ability to overfit the training data while maintaining strong generalization on unseen data, a phenomenon known as benign overfitting. However, research on how the training dynamics influence error bounds within the context of benign overfitting has been limited. This paper addresses this gap by developing a generalization theory for a two-layer transformer with labeled flip noise. Specifically, we present generalization error bounds for both benign and harmful overfitting under varying signal-to-noise ratios (SNR), where the training dynamics are categorized into three distinct stages, each with its corresponding error bounds. Additionally, we conduct extensive experiments to identify key factors that influence test errors in transformers. Our experimental results align closely with the theoretical predictions, validating our findings.