Goto

Collaborating Authors

 Liu, Yilun


R1-T1: Fully Incentivizing Translation Capability in LLMs via Reasoning Learning

arXiv.org Artificial Intelligence

Despite recent breakthroughs in reasoning-enhanced large language models (LLMs) like DeepSeek-R1, incorporating inference-time reasoning into machine translation (MT), where human translators naturally employ structured, multi-layered reasoning chain-of-thoughts (CoTs), is yet underexplored. Existing methods either design a fixed CoT tailored for a specific MT sub-task (e.g., literature translation), or rely on synthesizing CoTs unaligned with humans, limiting their adaptability to diverse translation scenarios. This paper introduces R1-Translator (R1-T1), a novel framework to achieve inference-time reasoning for general MT via reinforcement learning (RL) with human-aligned CoTs comprising six common patterns. Our approach pioneers three innovations: (1) extending reasoning-based translation beyond MT sub-tasks to six languages and diverse tasks (e.g., legal/medical domain adaptation, idiom resolution); (2) formalizing six expert-curated CoT templates that mirror hybrid human strategies like context-aware paraphrasing and back translation; and (3) enabling self-evolving CoT discovery through RL. Experimental results indicate a steady translation performance improvement in 11 languages and 40 translation directions on Flores-101 test set, especially on the languages unseen from training.


LogLM: From Task-based to Instruction-based Automated Log Analysis

arXiv.org Artificial Intelligence

Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors. However, existing approaches mostly treat log analysis as training a model to perform an isolated task ( e.g., anomaly detection, log parsing, etc.) using task-specific log-label pairs. These task-based approaches are inflexible in generalizing to complex scenarios, depend on task-specific training data, and cost significantly when deploying multiple models. In this paper, we propose an instruction-based training approach that transforms log-label pairs from multiple tasks and domains into a unified format of instruction-response pairs. Our trained model, LogLM, can follow complex user instructions and generalize better across different tasks, thereby increasing flexibility and reducing the dependence on task-specific training data. By integrating major log analysis tasks into a single model, our approach also relieves model deployment burden. Experimentally, LogLM outperforms existing approaches across five log analysis capabilities, and exhibits strong generalization abilities on complex instructions and unseen tasks.


Adapting Large Language Models to Log Analysis with Interpretable Domain Knowledge

arXiv.org Artificial Intelligence

The increasing complexity of computer systems necessitates innovative approaches to fault and error management, going beyond traditional manual log analysis. While existing solutions using large language models (LLMs) show promise, they are limited by a gap between natural and domain-specific languages, which restricts their effectiveness in real-world applications. Our approach addresses these limitations by integrating interpretable domain knowledge into open-source LLMs through continual pre-training (CPT), enhancing performance on log tasks while retaining natural language processing capabilities. We created a comprehensive dataset, NLPLog, with over 250,000 question-answer pairs to facilitate this integration. Our model, SuperLog, trained with this dataset, achieves the best performance across four log analysis tasks, surpassing the second-best model by an average of 12.01%. Our contributions include a novel CPT paradigm that significantly improves model performance, the development of SuperLog with state-of-the-art results, and the release of a large-scale dataset to support further research in this domain.


PERFT: Parameter-Efficient Routed Fine-Tuning for Mixture-of-Expert Model

arXiv.org Artificial Intelligence

The Mixture-of-Experts (MoE) paradigm has emerged as a powerful approach for scaling transformers with improved resource utilization. However, efficiently fine-tuning MoE models remains largely underexplored. Inspired by recent works on Parameter-Efficient Fine-Tuning (PEFT), we present a unified framework for integrating PEFT modules directly into the MoE mechanism. Aligning with the core principles and architecture of MoE, our framework encompasses a set of design dimensions including various functional and composition strategies. By combining design choices within our framework, we introduce Parameter-Efficient Routed Fine-Tuning (PERFT) as a flexible and scalable family of PEFT strategies tailored for MoE models. Extensive experiments on adapting OLMoE-1B-7B and Mixtral-8$\times$7B for commonsense and arithmetic reasoning tasks demonstrate the effectiveness, scalability, and intriguing dynamics of PERFT. Additionally, we provide empirical findings for each specific design choice to facilitate better application of MoE and PEFT.


GCondenser: Benchmarking Graph Condensation

arXiv.org Artificial Intelligence

Large-scale graphs are valuable for graph representation learning, yet the abundant data in these graphs hinders the efficiency of the training process. Graph condensation (GC) alleviates this issue by compressing the large graph into a significantly smaller one that still supports effective model training. Although recent research has introduced various approaches to improve the effectiveness of the condensed graph, evaluations in a more comprehensive and practical manner are not sufficiently explored. This paper proposes the first large-scale graph condensation benchmark, GCondenser, to holistically evaluate and compare mainstream GC methods. GCondenser includes a standardised GC paradigm with condensation, validation, and evaluation procedures, as well as straightforward extensions to new GC methods and datasets. Furthermore, a comprehensive study of GC methods is conducted, presenting insights into the different dimensions of condensation effectiveness.


LogEval: A Comprehensive Benchmark Suite for Large Language Models In Log Analysis

arXiv.org Artificial Intelligence

Log analysis is crucial for ensuring the orderly and stable operation of information systems, particularly in the field of Artificial Intelligence for IT Operations (AIOps). Large Language Models (LLMs) have demonstrated significant potential in natural language processing tasks. In the AIOps domain, they excel in tasks such as anomaly detection, root cause analysis of faults, operations and maintenance script generation, and alert information summarization. However, the performance of current LLMs in log analysis tasks remains inadequately validated. To address this gap, we introduce LogEval, a comprehensive benchmark suite designed to evaluate the capabilities of LLMs in various log analysis tasks for the first time. This benchmark covers tasks such as log parsing, log anomaly detection, log fault diagnosis, and log summarization. LogEval evaluates each task using 4,000 publicly available log data entries and employs 15 different prompts for each task to ensure a thorough and fair assessment. By rigorously evaluating leading LLMs, we demonstrate the impact of various LLM technologies on log analysis performance, focusing on aspects such as self-consistency and few-shot contextual learning. We also discuss findings related to model quantification, Chinese-English question-answering evaluation, and prompt engineering. These findings provide insights into the strengths and weaknesses of LLMs in multilingual environments and the effectiveness of different prompt strategies. Various evaluation methods are employed for different tasks to accurately measure the performance of LLMs in log analysis, ensuring a comprehensive assessment. The insights gained from LogEvals evaluation reveal the strengths and limitations of LLMs in log analysis tasks, providing valuable guidance for researchers and practitioners.


From Handcrafted Features to LLMs: A Brief Survey for Machine Translation Quality Estimation

arXiv.org Artificial Intelligence

Machine Translation Quality Estimation (MTQE) is the task of estimating the quality of machine-translated text in real time without the need for reference translations, which is of great importance for the development of MT. After two decades of evolution, QE has yielded a wealth of results. This article provides a comprehensive overview of QE datasets, annotation methods, shared tasks, methodologies, challenges, and future research directions. It begins with an introduction to the background and significance of QE, followed by an explanation of the concepts and evaluation metrics for word-level QE, sentence-level QE, document-level QE, and explainable QE. The paper categorizes the methods developed throughout the history of QE into those based on handcrafted features, deep learning, and Large Language Models (LLMs), with a further division of deep learning-based methods into classic deep learning and those incorporating pre-trained language models (LMs). Additionally, the article details the advantages and limitations of each method and offers a straightforward comparison of different approaches. Finally, the paper discusses the current challenges in QE research and provides an outlook on future research directions.


Clustering and Ranking: Diversity-preserved Instruction Selection through Expert-aligned Quality Estimation

arXiv.org Artificial Intelligence

With contributions from the open-source community, a vast amount of instruction tuning (IT) data has emerged. Given the significant resource allocation required by training and evaluating models, it is advantageous to have an efficient method for selecting high-quality IT data. However, existing methods for instruction data selection have limitations such as relying on fragile external APIs, being affected by biases in GPT models, or reducing the diversity of the selected instruction dataset. In this paper, we propose an industrial-friendly, expert-aligned and diversity-preserved instruction data selection method: Clustering and Ranking (CaR). CaR consists of two steps. The first step involves ranking instruction pairs using a scoring model that is well aligned with expert preferences (achieving an accuracy of 84.25%). The second step involves preserving dataset diversity through a clustering process.In our experiment, CaR selected a subset containing only 1.96% of Alpaca's IT data, yet the underlying AlpaCaR model trained on this subset outperforms Alpaca by an average of 32.1% in GPT-4 evaluations. Furthermore, our method utilizes small models (355M parameters) and requires only 11.2% of the monetary cost compared to existing methods, making it easily deployable in industrial scenarios.


PUMA: Efficient Continual Graph Learning with Graph Condensation

arXiv.org Artificial Intelligence

Abstract--When handling streaming graphs, existing graph representation learning models encounter a catastrophic forgetting problem, where previously learned knowledge of these models is easily overwritten when learning with newly incoming graphs. In response, Continual Graph Learning (CGL) emerges as a novel paradigm enabling graph representation learning from static to streaming graphs. Our prior work, Condense and T rain (CaT) [1] is a replay-based CGL framework with a balanced continual learning procedure, which designs a small yet effective memory bank for replaying data by condensing incoming graphs. Although the CaT alleviates the catastrophic forgetting problem, there exist three issues: (1) The graph condensation algorithm derived in CaT only focuses on labelled nodes while neglecting abundant information carried by unlabelled nodes; (2) The continual training scheme of the CaT overemphasises on the previously learned knowledge, limiting the model capacity to learn from newly added memories; (3) Both the condensation process and replaying process of the CaT are time-consuming. In this paper, we propose a PsUdo-label guided Memory b Ank (PUMA) CGL framework, extending from the CaT to enhance its efficiency and effectiveness by overcoming the above-mentioned weaknesses and limits. T o fully exploit the information in a graph, PUMA expands the coverage of nodes during graph condensation with both labelled and unlabelled nodes. Furthermore, a training-from-scratch strategy is proposed to upgrade the previous continual learning scheme for a balanced training between the historical and the new graphs. Besides, PUMA uses a one-time prorogation and wide graph encoders to accelerate the graph condensation and the graph encoding process in the training stage to improve the efficiency of the whole framework. Extensive experiments on four datasets demonstrate the state-of-the-art performance and efficiency over existing methods. Generally, graphs are treated as static data in traditional graph representation learning, where a model is fixed once it has been trained. However, for many scenarios in the real world (e.g., social networks, cation networks and knowledge graphs), graph data are changing and evolving in a streaming manner [5], [6], [7]. Recently, the Continual graph learning (CGL) has emerged to handle the streaming graph by adapting the static graph neural networks (GNNs). In CGL, the most significant challenge is how to address a catastrophic forgetting problem, where a model easily forgets the previously learned knowledge while overempha-sising on the incoming graphs [1], [8], [9], [10].


Sparsify-then-Classify: From Internal Neurons of Large Language Models To Efficient Text Classifiers

arXiv.org Artificial Intelligence

Among the many tasks that Large Language Models (LLMs) have revolutionized is text classification. However, existing approaches for applying pretrained LLMs to text classification predominantly rely on using single token outputs from only the last layer of hidden states. As a result, they suffer from limitations in efficiency, task-specificity, and interpretability. In our work, we contribute an approach that uses all internal representations by employing multiple pooling strategies on all activation and hidden states. Our novel lightweight strategy, Sparsify-then-Classify (STC) first sparsifies task-specific features layer-by-layer, then aggregates across layers for text classification. STC can be applied as a seamless plug-and-play module on top of existing LLMs. Our experiments on a comprehensive set of models and datasets demonstrate that STC not only consistently improves the classification performance of pretrained and fine-tuned models, but is also more efficient for both training and inference, and is more intrinsically interpretable.