Liu, Yikang
Label-Efficient Data Augmentation with Video Diffusion Models for Guidewire Segmentation in Cardiac Fluoroscopy
Pan, Shaoyan, Liu, Yikang, Zhao, Lin, Chen, Eric Z., Chen, Xiao, Chen, Terrence, Sun, Shanhui
The accurate segmentation of guidewires in interventional cardiac fluoroscopy videos is crucial for computer-aided navigation tasks. Although deep learning methods have demonstrated high accuracy and robustness in wire segmentation, they require substantial annotated datasets for generalizability, underscoring the need for extensive labeled data to enhance model performance. To address this challenge, we propose the Segmentation-guided Frame-consistency Video Diffusion Model (SF-VD) to generate large collections of labeled fluoroscopy videos, augmenting the training data for wire segmentation networks. SF-VD leverages videos with limited annotations by independently modeling scene distribution and motion distribution. It first samples the scene distribution by generating 2D fluoroscopy images with wires positioned according to a specified input mask, and then samples the motion distribution by progressively generating subsequent frames, ensuring frame-to-frame coherence through a frame-consistency strategy. A segmentation-guided mechanism further refines the process by adjusting wire contrast, ensuring a diverse range of visibility in the synthesized image. Evaluation on a fluoroscopy dataset confirms the superior quality of the generated videos and shows significant improvements in guidewire segmentation.
ZhoBLiMP: a Systematic Assessment of Language Models with Linguistic Minimal Pairs in Chinese
Liu, Yikang, Shen, Yeting, Zhu, Hongao, Xu, Lilong, Qian, Zhiheng, Song, Siyuan, Zhang, Kejia, Tang, Jialong, Zhang, Pei, Yang, Baosong, Wang, Rui, Hu, Hai
Whether and how language models (LMs) acquire the syntax of natural languages has been widely evaluated under the minimal pair paradigm. However, a lack of wide-coverage benchmarks in languages other than English has constrained systematic investigations into the issue. Addressing it, we first introduce ZhoBLiMP, the most comprehensive benchmark of linguistic minimal pairs for Chinese to date, with 118 paradigms, covering 15 linguistic phenomena. We then train 20 LMs of different sizes (14M to 1.4B) on Chinese corpora of various volumes (100M to 3B tokens) and evaluate them along with 14 off-the-shelf LLMs on ZhoBLiMP. The overall results indicate that Chinese grammar can be mostly learned by models with around 500M parameters, trained on 1B tokens with one epoch, showing limited benefits for further scaling. Most (N=95) linguistic paradigms are of easy or medium difficulty for LMs, while there are still 13 paradigms that remain challenging even for models with up to 32B parameters. In regard to how LMs acquire Chinese grammar, we observe a U-shaped learning pattern in several phenomena, similar to those observed in child language acquisition.
MELA: Multilingual Evaluation of Linguistic Acceptability
Zhang, Ziyin, Liu, Yikang, Huang, Weifang, Mao, Junyu, Wang, Rui, Hu, Hai
Recent benchmarks for Large Language Models (LLMs) have mostly focused on application-driven tasks such as complex reasoning and code generation, and this has led to a scarcity in purely linguistic evaluation of LLMs. Against this background, we introduce Multilingual Evaluation of Linguistic Acceptability -- MELA, the first multilingual benchmark on linguistic acceptability with 48K samples covering 10 languages from a diverse set of language families. We establish baselines of commonly used LLMs along with supervised models, and conduct cross-lingual transfer and multi-task learning experiments with XLM-R. In pursuit of multilingual interpretability, we analyze the weights of fine-tuned XLM-R to explore the possibility of identifying transfer difficulty between languages. Our results show that ChatGPT benefits much from in-context examples but still lags behind fine-tuned XLM-R, while the performance of GPT-4 is on par with fine-tuned XLM-R even in zero-shot setting. Cross-lingual and multi-task learning experiments show that unlike semantic tasks, in-language training data is crucial in acceptability judgements. Results in layerwise probing indicate that the upper layers of XLM-R become a task-specific but language-agnostic region for multilingual acceptability judgment. We also introduce the concept of conflicting weight, which could be a potential indicator for the difficulty of cross-lingual transfer between languages. Our data will be available at https://github.com/sjtu-compling/MELA.
ArguGPT: evaluating, understanding and identifying argumentative essays generated by GPT models
Liu, Yikang, Zhang, Ziyin, Zhang, Wanyang, Yue, Shisen, Zhao, Xiaojing, Cheng, Xinyuan, Zhang, Yiwen, Hu, Hai
AI generated content (AIGC) presents considerable challenge to educators around the world. Instructors need to be able to detect such text generated by large language models, either with the naked eye or with the help of some tools. There is also growing need to understand the lexical, syntactic and stylistic features of AIGC. To address these challenges in English language teaching, we first present ArguGPT, a balanced corpus of 4,038 argumentative essays generated by 7 GPT models in response to essay prompts from three sources: (1) in-class or homework exercises, (2) TOEFL and (3) GRE writing tasks. Machine-generated texts are paired with roughly equal number of human-written essays with three score levels matched in essay prompts. We then hire English instructors to distinguish machine essays from human ones. Results show that when first exposed to machine-generated essays, the instructors only have an accuracy of 61% in detecting them. But the number rises to 67% after one round of minimal self-training. Next, we perform linguistic analyses of these essays, which show that machines produce sentences with more complex syntactic structures while human essays tend to be lexically more complex. Finally, we test existing AIGC detectors and build our own detectors using SVMs and RoBERTa. Results suggest that a RoBERTa fine-tuned with the training set of ArguGPT achieves above 90% accuracy in both essay- and sentence-level classification. To the best of our knowledge, this is the first comprehensive analysis of argumentative essays produced by generative large language models. Machine-authored essays in ArguGPT and our models will be made publicly available at https://github.com/huhailinguist/ArguGPT
Computationally Efficient 3D MRI Reconstruction with Adaptive MLP
Chen, Eric Z., Zhang, Chi, Chen, Xiao, Liu, Yikang, Chen, Terrence, Sun, Shanhui
Compared with 2D MRI, 3D MRI provides superior volumetric spatial resolution and signal-to-noise ratio. However, it is more challenging to reconstruct 3D MRI images. Current methods are mainly based on convolutional neural networks (CNN) with small kernels, which are difficult to scale up to have sufficient fitting power for 3D MRI reconstruction due to the large image size and GPU memory constraint. Furthermore, MRI reconstruction is a deconvolution problem, which demands long-distance information that is difficult to capture by CNNs with small convolution kernels. The multi-layer perceptron (MLP) can model such long-distance information, but it requires a fixed input size. In this paper, we proposed Recon3DMLP, a hybrid of CNN modules with small kernels for low-frequency reconstruction and adaptive MLP (dMLP) modules with large kernels to boost the high-frequency reconstruction, for 3D MRI reconstruction. We further utilized the circular shift operation based on MRI physics such that dMLP accepts arbitrary image size and can extract global information from the entire FOV. We also propose a GPU memory efficient data fidelity module that can reduce $>$50$\%$ memory. We compared Recon3DMLP with other CNN-based models on a high-resolution (HR) 3D MRI dataset. Recon3DMLP improves HR 3D reconstruction and outperforms several existing CNN-based models under similar GPU memory consumption, which demonstrates that Recon3DMLP is a practical solution for HR 3D MRI reconstruction.
An Unsupervised Framework for Joint MRI Super Resolution and Gibbs Artifact Removal
Liu, Yikang, Chen, Eric Z., Chen, Xiao, Chen, Terrence, Sun, Shanhui
The k-space data generated from magnetic resonance imaging (MRI) is only a finite sampling of underlying signals. Therefore, MRI images often suffer from low spatial resolution and Gibbs ringing artifacts. Previous studies tackled these two problems separately, where super resolution methods tend to enhance Gibbs artifacts, whereas Gibbs ringing removal methods tend to blur the images. It is also a challenge that high resolution ground truth is hard to obtain in clinical MRI. In this paper, we propose an unsupervised learning framework for both MRI super resolution and Gibbs artifacts removal without using high resolution ground truth. Furthermore, we propose regularization methods to improve the model's generalizability across out-of-distribution MRI images. We evaluated our proposed methods with other state-of-the-art methods on eight MRI datasets with various contrasts and anatomical structures. Our method not only achieves the best SR performance but also significantly reduces the Gibbs artifacts. Our method also demonstrates good generalizability across different datasets, which is beneficial to clinical applications where training data are usually scarce and biased.