Goto

Collaborating Authors

 Liu, Yibo


Application of Ghost-DeblurGAN to Fiducial Marker Detection

arXiv.org Artificial Intelligence

Abstract-- Feature extraction or localization based on the fiducial marker could fail due to motion blur in real-world robotic applications. To solve this problem, a lightweight generative adversarial network, named Ghost-DeblurGAN, for real-time motion deblurring is developed in this paper. Furthermore, on account that there is no existing deblurring benchmark for such task, a new large-scale dataset, York-Tag, is proposed that provides pairs of sharp/blurred images containing fiducial markers. With the proposed model trained and tested on YorkTag, it is demonstrated that when applied along with fiducial marker systems to motion-blurred images, Ghost-DeblurGAN improves the marker detection significantly. Detected markers are labeled by red frames. However, previous studies have not systems [10], [7], [9], [8] do not take motion blur as a routine dealt with the application of deep-learning-based deblurring case, which makes the adoption of the deblurring method methods in fiducial marker systems.


VisualSem: a high-quality knowledge graph for vision and language

arXiv.org Artificial Intelligence

We argue that the next frontier in natural language understanding (NLU) and generation (NLG) will include models that can efficiently access external structured knowledge repositories. In order to support the development of such models, we release the VisualSem knowledge graph (KG) which includes nodes with multilingual glosses and multiple illustrative images and visually relevant relations. We also release a neural multi-modal retrieval model that can use images or sentences as inputs and retrieves entities in the KG. This multi-modal retrieval model can be integrated into any (neural network) model pipeline and we encourage the research community to use VisualSem for data augmentation and/or as a source of grounding, among other possible uses. VisualSem as well as the multi-modal retrieval model are publicly available and can be downloaded in: https://github.com/iacercalixto/visualsem.