Goto

Collaborating Authors

 Liu, Yibo


Muon is Scalable for LLM Training

arXiv.org Artificial Intelligence

Recently, the Muon optimizer based on matrix orthogonalization has demonstrated strong results in training small-scale language models, but the scalability to larger models has not been proven. We identify two crucial techniques for scaling up Muon: (1) adding weight decay and (2) carefully adjusting the per-parameter update scale. These techniques allow Muon to work out-of-the-box on large-scale training without the need of hyper-parameter tuning. Scaling law experiments indicate that Muon achieves $\sim\!2\times$ computational efficiency compared to AdamW with compute optimal training. Based on these improvements, we introduce Moonlight, a 3B/16B-parameter Mixture-of-Expert (MoE) model trained with 5.7T tokens using Muon. Our model improves the current Pareto frontier, achieving better performance with much fewer training FLOPs compared to prior models. We open-source our distributed Muon implementation that is memory optimal and communication efficient. We also release the pretrained, instruction-tuned, and intermediate checkpoints to support future research.


HIPPo: Harnessing Image-to-3D Priors for Model-free Zero-shot 6D Pose Estimation

arXiv.org Artificial Intelligence

This work focuses on model-free zero-shot 6D object pose estimation for robotics applications. While existing methods can estimate the precise 6D pose of objects, they heavily rely on curated CAD models or reference images, the preparation of which is a time-consuming and labor-intensive process. Moreover, in real-world scenarios, 3D models or reference images may not be available in advance and instant robot reaction is desired. In this work, we propose a novel framework named HIPPo, which eliminates the need for curated CAD models and reference images by harnessing image-to-3D priors from Diffusion Models, enabling model-free zero-shot 6D pose estimation. Specifically, we construct HIPPo Dreamer, a rapid image-to-mesh model built on a multiview Diffusion Model and a 3D reconstruction foundation model. Our HIPPo Dreamer can generate a 3D mesh of any unseen objects from a single glance in just a few seconds. Then, as more observations are acquired, we propose to continuously refine the diffusion prior mesh model by joint optimization of object geometry and appearance. This is achieved by a measurement-guided scheme that gradually replaces the plausible diffusion priors with more reliable online observations. Consequently, HIPPo can instantly estimate and track the 6D pose of a novel object and maintain a complete mesh for immediate robotic applications. Thorough experiments on various benchmarks show that HIPPo outperforms state-of-the-art methods in 6D object pose estimation when prior reference images are limited.


Kimi k1.5: Scaling Reinforcement Learning with LLMs

arXiv.org Artificial Intelligence

Language model pretraining with next token prediction has proved effective for scaling compute but is limited to the amount of available training data. Scaling reinforcement learning (RL) unlocks a new axis for the continued improvement of artificial intelligence, with the promise that large language models (LLMs) can scale their training data by learning to explore with rewards. However, prior published work has not produced competitive results. In light of this, we report on the training practice of Kimi k1.5, our latest multi-modal LLM trained with RL, including its RL training techniques, multi-modal data recipes, and infrastructure optimization. Long context scaling and improved policy optimization methods are key ingredients of our approach, which establishes a simplistic, effective RL framework without relying on more complex techniques such as Monte Carlo tree search, value functions, and process reward models. Notably, our system achieves state-of-the-art reasoning performance across multiple benchmarks and modalities -- e.g., 77.5 on AIME, 96.2 on MATH 500, 94-th percentile on Codeforces, 74.9 on MathVista -- matching OpenAI's o1. Moreover, we present effective long2short methods that use long-CoT techniques to improve short-CoT models, yielding state-of-the-art short-CoT reasoning results -- e.g., 60.8 on AIME, 94.6 on MATH500, 47.3 on LiveCodeBench -- outperforming existing short-CoT models such as GPT-4o and Claude Sonnet 3.5 by a large margin (up to +550%).


UniGaussian: Driving Scene Reconstruction from Multiple Camera Models via Unified Gaussian Representations

arXiv.org Artificial Intelligence

Urban scene reconstruction is crucial for real-world autonomous driving simulators. Although existing methods have achieved photorealistic reconstruction, they mostly focus on pinhole cameras and neglect fisheye cameras. In fact, how to effectively simulate fisheye cameras in driving scene remains an unsolved problem. In this work, we propose UniGaussian, a novel approach that learns a unified 3D Gaussian representation from multiple camera models for urban scene reconstruction in autonomous driving. Our contributions are two-fold. First, we propose a new differentiable rendering method that distorts 3D Gaussians using a series of affine transformations tailored to fisheye camera models. This addresses the compatibility issue of 3D Gaussian splatting with fisheye cameras, which is hindered by light ray distortion caused by lenses or mirrors. Besides, our method maintains real-time rendering while ensuring differentiability. Second, built on the differentiable rendering method, we design a new framework that learns a unified Gaussian representation from multiple camera models. By applying affine transformations to adapt different camera models and regularizing the shared Gaussians with supervision from different modalities, our framework learns a unified 3D Gaussian representation with input data from multiple sources and achieves holistic driving scene understanding. As a result, our approach models multiple sensors (pinhole and fisheye cameras) and modalities (depth, semantic, normal and LiDAR point clouds). Our experiments show that our method achieves superior rendering quality and fast rendering speed for driving scene simulation.


Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement

arXiv.org Artificial Intelligence

Recent advancements in LLM-based agents have led to significant progress in automatic software engineering, particularly in software maintenance and evolution. Despite these encouraging advances, current research faces two major challenges. First, SOTA performance primarily depends on closed-source models, which significantly limits the technology's accessibility, and potential for customization in diverse SE tasks. Second, these models are predominantly trained on static code data, lacking a deep understanding of the dynamic interactions, iterative problem-solving processes, and evolutionary characteristics inherent in software development. To address these challenges, our study adopts a software engineering perspective. We recognize that real-world software maintenance and evolution processes encompass not only static code data but also developers' thought processes, utilization of external tools, and the interaction between different functional personnel. Consequently, we introduce the Lingma SWE-GPT series, comprising Lingma SWE-GPT 7B and 72B. By learning from and simulating real-world code submission activities, Lingma SWE-GPT systematically incorporates the dynamic interactions and iterative problem-solving inherent in software development process, thereby achieving a more comprehensive understanding of software improvement processes. We conducted experimental evaluations using SWE-bench Verified benchmark. The results demonstrate that Lingma SWE-GPT 72B successfully resolves 30.20% of the GitHub issues, marking a significant improvement in automatic issue resolution (22.76% relative improvement compared to Llama 3.1 405B), approaching the performance of closed-source models (31.80\% issues of GPT-4o resolved). Notably, Lingma SWE-GPT 7B resolves 18.20% of the issues, highlighting the potential for applying smaller models to ASE tasks.


L-PR: Exploiting LiDAR Fiducial Marker for Unordered Low Overlap Multiview Point Cloud Registration

arXiv.org Artificial Intelligence

Point cloud registration is a prerequisite for many applications in computer vision and robotics. Most existing methods focus on pairwise registration of two point clouds with high overlap. Although there have been some methods for low overlap cases, they struggle in degraded scenarios. This paper introduces a novel framework named L-PR, designed to register unordered low overlap multiview point clouds leveraging LiDAR fiducial markers. We refer to them as LiDAR fiducial markers, but they are the same as the popular AprilTag and ArUco markers, thin sheets of paper that do not affect the 3D geometry of the environment. We first propose an improved adaptive threshold marker detection method to provide robust detection results when the viewpoints among point clouds change dramatically. Then, we formulate the unordered multiview point cloud registration problem as a maximum a-posteriori (MAP) problem and develop a framework consisting of two levels of graphs to address it. The first-level graph, constructed as a weighted graph, is designed to efficiently and optimally infer initial values of scan poses from the unordered set. The second-level graph is constructed as a factor graph. By globally optimizing the variables on the graph, including scan poses, marker poses, and marker corner positions, we tackle the MAP problem. We conduct qualitative and quantitative experiments to demonstrate that the proposed method exhibits superiority over competitors in four aspects: registration accuracy, instance reconstruction quality, localization accuracy, and robustness to the degraded scene. To benefit the community, we open-source our method and dataset at https://github.com/yorklyb/LiDAR-SFM.


MMMU: A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI

arXiv.org Artificial Intelligence

We introduce MMMU: a new benchmark designed to evaluate multimodal models on massive multi-discipline tasks demanding college-level subject knowledge and deliberate reasoning. MMMU includes 11.5K meticulously collected multimodal questions from college exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Tech & Engineering. These questions span 30 subjects and 183 subfields, comprising 30 highly heterogeneous image types, such as charts, diagrams, maps, tables, music sheets, and chemical structures. Unlike existing benchmarks, MMMU focuses on advanced perception and reasoning with domain-specific knowledge, challenging models to perform tasks akin to those faced by experts. The evaluation of 14 open-source LMMs as well as the proprietary GPT-4V(ision) and Gemini highlights the substantial challenges posed by MMMU. Even the advanced GPT-4V and Gemini Ultra only achieve accuracies of 56% and 59% respectively, indicating significant room for improvement. We believe MMMU will stimulate the community to build next-generation multimodal foundation models towards expert artificial general intelligence.


Never Lost in the Middle: Improving Large Language Models via Attention Strengthening Question Answering

arXiv.org Artificial Intelligence

While large language models (LLMs) are equipped with longer text input capabilities than before, they are struggling to seek correct information in long contexts. The "lost in the middle" problem challenges most LLMs, referring to the dramatic decline in accuracy when correct information is located in the middle. To overcome this crucial issue, this paper proposes to enhance the information searching and reflection ability of LLMs in long contexts via specially designed tasks called Attention Strengthening Multi-doc QA (ASM QA). Following these tasks, our model excels in focusing more precisely on the desired information. Experimental results show substantial improvement in Multi-doc QA and other benchmarks, superior to state-of-the-art models by 13.7% absolute gain in shuffled settings, by 21.5% in passage retrieval task. We release our model, Ziya-Reader to promote related research in the community.


MV-DeepSDF: Implicit Modeling with Multi-Sweep Point Clouds for 3D Vehicle Reconstruction in Autonomous Driving

arXiv.org Artificial Intelligence

Reconstructing 3D vehicles from noisy and sparse partial point clouds is of great significance to autonomous driving. Most existing 3D reconstruction methods cannot be directly applied to this problem because they are elaborately designed to deal with dense inputs with trivial noise. In this work, we propose a novel framework, dubbed MV-DeepSDF, which estimates the optimal Signed Distance Function (SDF) shape representation from multi-sweep point clouds to reconstruct vehicles in the wild. Although there have been some SDF-based implicit modeling methods, they only focus on single-view-based reconstruction, resulting in low fidelity. In contrast, we first analyze multi-sweep consistency and complementarity in the latent feature space and propose to transform the implicit space shape estimation problem into an element-to-set feature extraction problem. Then, we devise a new architecture to extract individual element-level representations and aggregate them to generate a set-level predicted latent code. This set-level latent code is an expression of the optimal 3D shape in the implicit space, and can be subsequently decoded to a continuous SDF of the vehicle. In this way, our approach learns consistent and complementary information among multi-sweeps for 3D vehicle reconstruction. We conduct thorough experiments on two real-world autonomous driving datasets (Waymo and KITTI) to demonstrate the superiority of our approach over state-of-the-art alternative methods both qualitatively and quantitatively.


Occlusion-Resistant LiDAR Fiducial Marker Detection

arXiv.org Artificial Intelligence

The LiDAR fiducial marker, akin to the well-known AprilTag used in camera applications, serves as a convenient resource to impart artificial features to the LiDAR sensor, facilitating robotics applications. Unfortunately, current LiDAR fiducial marker detection methods are limited to occlusion-free point clouds. In this work, we present a novel approach for occlusion-resistant LiDAR fiducial marker detection. We first extract 3D points potentially corresponding to the markers, leveraging the 3D intensity gradients. Afterward, we analyze the 3D spatial distribution of the extracted points through clustering. Subsequently, we determine the potential marker locations by examining the geometric characteristics of these clusters. We then successively transfer the 3D points that fall within the candidate locations from the raw point cloud onto a designed intermediate plane. Finally, using the intermediate plane, we validate each location for the presence of a fiducial marker and compute the marker's pose if found. We conduct both qualitative and quantitative experiments to demonstrate that our approach is the first LiDAR fiducial marker detection method applicable to point clouds with occlusion while achieving better accuracy.