Liu, Yanting
Generation with Dynamic Vocabulary
Liu, Yanting, Ji, Tao, Sun, Changzhi, Wu, Yuanbin, Wang, Xiaoling
We introduce a new dynamic vocabulary for language models. It can involve arbitrary text spans during generation. These text spans act as basic generation bricks, akin to tokens in the traditional static vocabularies. We show that, the ability to generate multi-tokens atomically improve both generation quality and efficiency (compared to the standard language model, the MAUVE metric is increased by 25%, the latency is decreased by 20%). The dynamic vocabulary can be deployed in a plug-and-play way, thus is attractive for various downstream applications. For example, we demonstrate that dynamic vocabulary can be applied to different domains in a training-free manner. It also helps to generate reliable citations in question answering tasks (substantially enhancing citation results without compromising answer accuracy).
SAMEdge: An Edge-cloud Video Analytics Architecture for the Segment Anything Model
Lu, Rui, Shi, Siping, Liu, Yanting, Wang, Dan
As artificial intelligence continues to evolve, it is increasingly capable of handling a wide range of video analytics tasks with merely one large model. One of the key foundation technologies is the Segment Anything Model (SAM), which allows the video analytics tasks to be determined on the fly according to the input prompts from the user. However, achieving real-time response in video analytics applications is crucial for user experiences due to the limited communication and computation resources on the edge, especially with SAM, where users may continuously interact by adding or adjusting prompts. In this paper, we propose SAMEdge, a novel edge-cloud computing architecture designed to support SAM computations for edge users. SAMEdge integrates new modules on the edge and the cloud to maximize analytics accuracy under visual prompts and image prompts input with latency constraints. It addresses resource challenges associated with prompt encoding and image encoding by offering a visual prompt transformation algorithm for visual prompts and efficient workload partitioning for image encoding. SAMEdge is implemented by extending the open-source SAM project from Meta AI. We demonstrate the practical application of SAMEdge through a case study on a Visual Tour Guide application. Our evaluation indicates that SAMEdge significantly enhances the accuracy of the video analytics application under distinct network bandwidths across various prompts.