Goto

Collaborating Authors

 Liu, Xintong


EgoSim: An Egocentric Multi-view Simulator and Real Dataset for Body-worn Cameras during Motion and Activity

arXiv.org Artificial Intelligence

Research on egocentric tasks in computer vision has mostly focused on head-mounted cameras, such as fisheye cameras or embedded cameras inside immersive headsets. We argue that the increasing miniaturization of optical sensors will lead to the prolific integration of cameras into many more body-worn devices at various locations. This will bring fresh perspectives to established tasks in computer vision and benefit key areas such as human motion tracking, body pose estimation, or action recognition -- particularly for the lower body, which is typically occluded. In this paper, we introduce EgoSim, a novel simulator of body-worn cameras that generates realistic egocentric renderings from multiple perspectives across a wearer's body. A key feature of EgoSim is its use of real motion capture data to render motion artifacts, which are especially noticeable with arm- or leg-worn cameras. In addition, we introduce MultiEgoView, a dataset of egocentric footage from six body-worn cameras and ground-truth full-body 3D poses during several activities: 119 hours of data are derived from AMASS motion sequences in four high-fidelity virtual environments, which we augment with 5 hours of real-world motion data from 13 participants using six GoPro cameras and 3D body pose references from an Xsens motion capture suit. We demonstrate EgoSim's effectiveness by training an end-to-end video-only 3D pose estimation network. Analyzing its domain gap, we show that our dataset and simulator substantially aid training for inference on real-world data. EgoSim code & MultiEgoView dataset: https://siplab.org/projects/EgoSim


Deep Learning with Information Fusion and Model Interpretation for Health Monitoring of Fetus based on Long-term Prenatal Electronic Fetal Heart Rate Monitoring Data

arXiv.org Artificial Intelligence

Long-term fetal heart rate (FHR) monitoring during the antepartum period, increasingly popularized by electronic FHR monitoring, represents a growing approach in FHR monitoring. This kind of continuous monitoring, in contrast to the short-term one, collects an extended period of fetal heart data. This offers a more comprehensive understanding of fetus's conditions. However, the interpretation of long-term antenatal fetal heart monitoring is still in its early stages, lacking corresponding clinical standards. Furthermore, the substantial amount of data generated by continuous monitoring imposes a significant burden on clinical work when analyzed manually. To address above challenges, this study develops an automatic analysis system named LARA (Long-term Antepartum Risk Analysis system) for continuous FHR monitoring, combining deep learning and information fusion methods. LARA's core is a well-established convolutional neural network (CNN) model. It processes long-term FHR data as input and generates a Risk Distribution Map (RDM) and Risk Index (RI) as the analysis results. We evaluate LARA on inner test dataset, the performance metrics are as follows: AUC 0.872, accuracy 0.816, specificity 0.811, sensitivity 0.806, precision 0.271, and F1 score 0.415. In our study, we observe that long-term FHR monitoring data with higher RI is more likely to result in adverse outcomes (p=0.0021). In conclusion, this study introduces LARA, the first automated analysis system for long-term FHR monitoring, initiating the further explorations into its clinical value in the future.